Last visit was: 20 Nov 2025, 01:32 It is currently 20 Nov 2025, 01:32
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,408
Own Kudos:
778,430
 [7]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,430
 [7]
4
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,408
Own Kudos:
778,430
 [3]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,430
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
jeeteshsingh
Joined: 22 Dec 2009
Last visit: 03 Aug 2023
Posts: 177
Own Kudos:
Given Kudos: 48
Posts: 177
Kudos: 1,001
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,408
Own Kudos:
778,430
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,430
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jeeteshsingh

The solution provided by you is well explained.. However for the text marked in red - is there a faster way for solving the eq for k...? Since time crunch is a big issue in GMAT exam? Please let me know your views...

Thanks,
JT

Do you mean from this point: (k+1)(k+2)(k+3)=3!*120=720?

I solved this in the following way: 720, three digit integer ending with 0, is the product of three consecutive integers. Obviously one of them must be multiple of 5: try 5*6*7=210<720, next triplet 8*9*10=720, bingo!
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,430
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sandeep25398
Bunuel
.
3. How many numbers that are not divisible by 6 divide evenly into 264,600?
(A) 9
(B) 36
(C) 51
(D) 63
(E) 72

Answer: D.
hi Bunuel,
could you please, clarify "evenly divisible" does not mean the quotient should be multiple of 2?
or evenly divisible is equivalent to completely divisible in this context.
thanks.

Evenly divisible=divisible, --> remainder=0.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,408
Own Kudos:
778,430
 [1]
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,430
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
amod243
Bunuel.. Can you explain the solution of Problem #1

ABCDE is a regular pentagon with F at its center. How many different triangles can be formed by joining 3 of the points A,B,C,D,E and F?
(A) 10
(B) 15
(C) 20
(D) 25
(E) 30

Regular pentagon is a pentagon where all sides are equal. In such pentagon center is not collinear to any two vertices, so ANY three points (from 5 vertices and center point) WILL form the triangle.

The question basically asks how many triangles can be formed from the six points on a plane with no three points being collinear.

As any 3 points from 6 will make a triangle (since no 3 points are collinear), then:

6C3=20

Answer: C.

Hope it helps.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,430
Kudos
Add Kudos
Bookmarks
Bookmark this Post
masland
ExecMBA2010
A query on Q7:What is the meaning of this portion?

'to the average(arithmetic mean)of 100units of Country R's currency'

I'm curious as well. The language of this question really threw me off.

The language is from GMATPrep

7. Before being simplified, the instructions for computing income tax in Country Rwere to add 2 percent of one's annual income to the average(arithmetic mean)of 100units of Country R's currency and 1 percent of one's annual income. Which of the following represents the simplified formula for computing the income tax in Country R's currency, for a person in that country whose annual income is I?
(A) 50+I/200
(B) 50+3I/100
(C) 50+I/40
(D) 100+I/50
(E) 100+3I/100

Tax is the sum of the following:
2 percent of one's annual income - \(0.02I\);
The average (arithmetic mean) of 100 units of country R's currency and 1 percent of one's annual income - \(\frac{100+0.01I}{2}\).

\(Tax=0.02*I+\frac{100+0.01*I}{2}=\frac{0.04*I+100+0.01*I}{2}=50+\frac{0.05*I}{2}=50+\frac{I}{40}\).

Answer: C.
User avatar
yogesh1984
Joined: 12 Dec 2010
Last visit: 13 Nov 2021
Posts: 176
Own Kudos:
Given Kudos: 23
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE:Consulting (Other)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

10. How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤3 and 1≤y≤3?[/b]
(A) 72
(B) 76
(C) 78
(D) 80
(E) 84

It would be better if you draw it while reading this explanation. With the restriction given (1≤x≤3 and 1≤y≤3) we get 9 points, from which we can form the triangle: (1,1), (1,2), (1,3), (2,1)...

From this 9 points any three (9C3) will form the triangle BUT THE SETS of three points which are collinear.

We'll have 8 sets of collinear points of three:
3 horizontal {(1,1),(2,1),(3,1)} {(1,2)(2,2)(3,2)}...
3 vertical
2 diagonal {(1,1)(2,2)(3,3)}{(1,3)(2,2)(3,1)}

So the final answer would be; 9C3-8=84-8=76

Answer: B.

Hope it's clear.

Bunuel,

1- Collinear point issue will arise in case of overlapping values of x, y ? (as in here we have all the overlapping range for x & y). Also since range here is small for both x, y (ie.=3) we can manually calculate the collinear points but in case of large range how do we go about it ? should it be = # overlapping points on X + # overlapping points on Y + # diagonal points (which will essentially be min(# overlapping points on X , Y) -1 )-- Not so sure on this though ...

2- I see a similar Question in OG12 PS Q.229- The method explained here in the above example does not seems to fit too well there. basically in the question we have -4 <= X <=5, 6<= Y <=16. Can you please throw some light in the context of OG question....

TIA ~ Yogesh
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
yogesh1984


Bunuel,

1- Collinear point issue will arise in case of overlapping values of x, y ? (as in here we have all the overlapping range for x & y). Also since range here is small for both x, y (ie.=3) we can manually calculate the collinear points but in case of large range how do we go about it ? should it be = # overlapping points on X + # overlapping points on Y + # diagonal points (which will essentially be min(# overlapping points on X , Y) -1 )-- Not so sure on this though ...

2- I see a similar Question in OG12 PS Q.229- The method explained here in the above example does not seems to fit too well there. basically in the question we have -4 <= X <=5, 6<= Y <=16. Can you please throw some light in the context of OG question....

TIA ~ Yogesh

Check out this thread:
ps-right-triangle-pqr-71597.html?hilit=how%20many%20triangles#p830694
It discusses what to do in case of a larger range.
User avatar
dimri10
Joined: 16 May 2011
Last visit: 25 Sep 2023
Posts: 238
Own Kudos:
Given Kudos: 64
Concentration: Finance, Real Estate
GMAT Date: 12-27-2011
WE:Law (Law)
Posts: 238
Kudos: 351
Kudos
Add Kudos
Bookmarks
Bookmark this Post
if anyone can help please to clarify the methos:

let's say that the Q was:
How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?
how will it be solved:
will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different.

thank's in advance
User avatar
yogesh1984
Joined: 12 Dec 2010
Last visit: 13 Nov 2021
Posts: 176
Own Kudos:
Given Kudos: 23
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE:Consulting (Other)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dimri10
if anyone can help please to clarify the methos:

let's say that the Q was:
How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?
how will it be solved:
will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different.

thank's in advance

While I seriously doubt whether one could encounter such long range question
(esp. because calculating # diagonals is going to be little tricky here) unless you are shooting for 51 in quant.

That said let me try my hands-

Think about when it will be horizontal collinear- all the y values are same for a given set of X values. so we have 6 values where Y can be same (it has to be integer coordinate)- so total # horizontal collinear points- 6
You can have similar argument for vertical (constant X and vary Y) set of collinear points- 6

For # diagonals (please refer tot the attachment, I sketched only one side of the diagonals ) - you should be able to count the numbers now. For one side it comes out that we will have 16 such pairs (of 3 points) so by symmetry you need to multiply by 2. SO a total # diagonals will be 32.

I hope that helps.

~ Yogesh
Attachments

Diagonals.xlsx [8.84 KiB]
Downloaded 177 times

User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [2]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
dimri10
if anyone can help please to clarify the methos:

let's say that the Q was:
How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?
how will it be solved:
will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different.

thank's in advance

I think your question is quite similar to yogesh1984's question above. I missed answering his question (thought of doing it later due to the diagram involved but it skipped my mind).
Anyway, let me show you how I would solve such a question. Both the questions can be easily answered using this method.

How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?

Check out this post for the solution:
https://www.gmatclub.com/forum/veritas-prep-resource-links-no-longer-available-399979.html#/2011/09 ... mment-2495

*Edited the post to fix the problem.
Attachments

Ques2.jpg
Ques2.jpg [ 16.67 KiB | Viewed 10604 times ]

User avatar
GMATmission
Joined: 16 Aug 2011
Last visit: 13 Jan 2012
Posts: 105
Own Kudos:
Given Kudos: 43
Status:Bell the GMAT!!!
Affiliations: Aidha
Location: Singapore
Concentration: Finance, General Management
GMAT 1: 680 Q46 V37
GMAT 2: 620 Q49 V27
GMAT 3: 700 Q49 V36
WE:Other (Other)
GMAT 3: 700 Q49 V36
Posts: 105
Kudos: 214
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Economist
yangsta,
i liked your solution for 4. I didnt know we can use the definition of linear equation to solve such problems.

I used the guessing method.
we have two relationships...6--30 and 24---60.
This means when R is increased 4 times, S increases 2 times, so if R is increased 2 times S will increase 1 time.
Now, 30*3 ~ 100, so 3 times increase in S will have atleast a 6 times increase in R, i.e. R should be something greater than 36..closest is 48 :)

Another method (let me call it intuition method) :

6 on scale R corresponds to 30 on scale S and 24 on scale R corresponds to 60 on scale S. If we notice the relationship, we will see that for every 6 points on scale R, 10 points move on scale S. So, 90 points on scale S corresponds to 42 points on Scale R and another 6 points of scale S for another 10 points on scale R. Hence 100 on scale S corresponds to 42+6 = 48 on scale R.

I hope I am making sense :)
avatar
akhileshankala
Joined: 21 Jan 2012
Last visit: 07 Dec 2012
Posts: 1
Posts: 1
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasPrepKarishma
dimri10
if anyone can help please to clarify the methos:

let's say that the Q was:
How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?
how will it be solved:
will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different.

thank's in advance

I think your question is quite similar to yogesh1984's question above. I missed answering his question (thought of doing it later due to the diagram involved but it skipped my mind).
Anyway, let me show you how I would solve such a question. Both the questions can be easily answered using this method.

How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?

Ok, so we have a total of 36 co-ordinates (as shown below by the red and black dots). We need to make triangles so we need to select a triplet of co-ordinates out of these 36 which can be done in 36C3 ways. Out of these, we need to get rid of those triplets where the points are collinear. How many such triplets are there?
Look at the diagram:

Attachment:
Ques2.jpg
The Black dots are the outermost points. Red dots are the inside points. Now each of these red dots is the center point for 4 sets of collinear points (as shown by the red arrows). Hence the 4*4 = 16 red dots will make 16*4 = 64 triplets of collinear points.
These 64 triplets account for all collinear triplets except those lying on the edges. Each of the 4 edges will account for 4 triplets of collinear points shown by the black arrows. Hence, there will be another 4*4 = 16 triplets of collinear points.
Total triplets of collinear points = 64 + 16 = 80
Therefore, total number of triangles you can make = 36C3 - 80


Similarly you can work with 1<=x<=5 and -9<=y<=3.
The number of red dots in this case = 11*3 = 33
So number of collinear triplets represented by red arrows will be = 33*4 = 132
Number of black arrows will be 3 + 11 + 3 + 11 = 28
Total triplets of collinear points = 132 + 28 = 160
Total triangles in this case = 65C3 - 160

Ma'am,
It would like to point out tht the resoning given is wrong. the triplets need not necessarily be adjacent. tht's the flaw.
my way:
no: of collinear points=?
horizontal and vertical lines both give the same no: and each line of 6 points gives 6C3 possibs.
hence horz and vert. lines give a total of 2*6*6C3.
next 2 diagonals give same no: of such possibs.
consider any diagonal direction. it gives 3,4,5,6,5,4,3 collinear points along 6 parallel lines corresponding to any diagonalic direction and each of the points gives us their corresponding triples-3C3+4C3+5C3+6C3+5C3+4C3+3C3.

along 2 such dirs. this adds up to 2*(2*(3C3+4C3+5C3)+6C3).

total no: of line forming selections= 2*6*6C3+ 2*(2*(3C3+4C3+5C3)+6C3).
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
Kudos
Add Kudos
Bookmarks
Bookmark this Post
akhileshankala

It would like to point out tht the resoning given is wrong. the triplets need not necessarily be adjacent. tht's the flaw.
my way:
no: of collinear points=?
horizontal and vertical lines both give the same no: and each line of 6 points gives 6C3 possibs.
hence horz and vert. lines give a total of 2*6*6C3.
next 2 diagonals give same no: of such possibs.
consider any diagonal direction. it gives 3,4,5,6,5,4,3 collinear points along 6 parallel lines corresponding to any diagonalic direction and each of the points gives us their corresponding triples-3C3+4C3+5C3+6C3+5C3+4C3+3C3.

along 2 such dirs. this adds up to 2*(2*(3C3+4C3+5C3)+6C3).

total no: of line forming selections= 2*6*6C3+ 2*(2*(3C3+4C3+5C3)+6C3).

Yes, I did miss out on the non-adjacent collinear points! And on the face of it, your calculation looks correct. I will put some more time on this variation tomorrow (since today is Sunday!) and get back if needed.
User avatar
yogesh1984
Joined: 12 Dec 2010
Last visit: 13 Nov 2021
Posts: 176
Own Kudos:
Given Kudos: 23
Concentration: Strategy, General Management
GMAT 1: 680 Q49 V34
GMAT 2: 730 Q49 V41
GPA: 4
WE:Consulting (Other)
Products:
Kudos
Add Kudos
Bookmarks
Bookmark this Post
akhileshankala
VeritasPrepKarishma
dimri10
if anyone can help please to clarify the methos:

let's say that the Q was:
How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?
how will it be solved:
will 3C36 minus 6 vertical and 6 horizontal minus 2 diagonals will be the answer or will the answer be different.

thank's in advance

I think your question is quite similar to yogesh1984's question above. I missed answering his question (thought of doing it later due to the diagram involved but it skipped my mind).
Anyway, let me show you how I would solve such a question. Both the questions can be easily answered using this method.

How many triangles with positive area can be drawn on the coordinate plane such that the vertices have integer coordinates (x,y) satisfying 1≤x≤6 and 1≤y≤6?

Ok, so we have a total of 36 co-ordinates (as shown below by the red and black dots). We need to make triangles so we need to select a triplet of co-ordinates out of these 36 which can be done in 36C3 ways. Out of these, we need to get rid of those triplets where the points are collinear. How many such triplets are there?
Look at the diagram:

Attachment:
Ques2.jpg
The Black dots are the outermost points. Red dots are the inside points. Now each of these red dots is the center point for 4 sets of collinear points (as shown by the red arrows). Hence the 4*4 = 16 red dots will make 16*4 = 64 triplets of collinear points.
These 64 triplets account for all collinear triplets except those lying on the edges. Each of the 4 edges will account for 4 triplets of collinear points shown by the black arrows. Hence, there will be another 4*4 = 16 triplets of collinear points.
Total triplets of collinear points = 64 + 16 = 80
Therefore, total number of triangles you can make = 36C3 - 80


Similarly you can work with 1<=x<=5 and -9<=y<=3.
The number of red dots in this case = 11*3 = 33
So number of collinear triplets represented by red arrows will be = 33*4 = 132
Number of black arrows will be 3 + 11 + 3 + 11 = 28
Total triplets of collinear points = 132 + 28 = 160
Total triangles in this case = 65C3 - 160

Ma'am,
It would like to point out tht the resoning given is wrong. the triplets need not necessarily be adjacent. tht's the flaw.
my way:
no: of collinear points=?
horizontal and vertical lines both give the same no: and each line of 6 points gives 6C3 possibs.
hence horz and vert. lines give a total of 2*6*6C3.
next 2 diagonals give same no: of such possibs.
consider any diagonal direction. it gives 3,4,5,6,5,4,3 collinear points along 6 parallel lines corresponding to any diagonalic direction and each of the points gives us their corresponding triples-3C3+4C3+5C3+6C3+5C3+4C3+3C3.

along 2 such dirs. this adds up to 2*(2*(3C3+4C3+5C3)+6C3).

total no: of line forming selections= 2*6*6C3+ 2*(2*(3C3+4C3+5C3)+6C3).


Can you please elaborate on the bolded part in details...
avatar
zpotm
Joined: 09 Mar 2012
Last visit: 13 May 2013
Posts: 94
Own Kudos:
Given Kudos: 12
Location: India
GMAT 1: 740 Q50 V39
GPA: 3.4
WE:Business Development (Manufacturing)
Products:
GMAT 1: 740 Q50 V39
Posts: 94
Kudos: 18
Kudos
Add Kudos
Bookmarks
Bookmark this Post
This is a 6x6 square. For each diagonal of this square, you have 8 parallel lines, you can draw within the square by joining the vertices that lies on the edges of the square.
eg: Join (1,2) & (2,1); (1,3) & (3,1); (1,4) & (4,1); (1,5) & (5,1); to get 4 parallel lines along the diagonal (1,6)-(6,1)
Similarly you can get 4 lines on the other side of the diagonal.

Of these, (line joining (1,2) to (2,1) is of no use to us since it contains only 2 points within the square)
the line joining point (1,3) & (3,1) contains total of 3 integer co-ordinates,
the line joining point (1,4) & (4,1) contains total of 4 integer co-ordinates, and so on.....

Any 3 points that you select from these lines will be collinear and not form a traingle.
Thus, you have 3,4,5,6,5,4,3 points collinear along the lines parallel to the diagonal.
Rest as akhilesh has mentioned.

You may draw a figure by plotting these points.

My 1st post on this forum, so Apologies for the weird explanation.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,001
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,001
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
yogesh1984


Can you please elaborate on the bolded part in details...

Check out this post. I have explained this question in detail in this post. It fixes the problem my above given solution had.

https://www.gmatclub.com/forum/veritas-prep-resource-links-no-longer-available-399979.html#/2011/09 ... o-succeed/
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,408
Own Kudos:
Given Kudos: 99,987
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,408
Kudos: 778,430
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shreya717
Shouldn't the answer to Question 2 be B?

Answers are given in the following post: new-set-of-good-ps-85440.html#p642321 OA for this question is A, not B.

The function f is defined for all positive integers n by the following rule. f(n) is the number of positive integers each of which is less than n and has no positive factor in common with n other than 1. If p is a prime number then f(p)=
A. p-1
B. p-2
C. (p+1)/2
D. (p-1)/2
E. 2

If not the wording the question wouldn't be as tough as it is now. The GMAT often hides some simple concept in complicated way of delivering it.

This question for instance basically asks: how many positive integers are less than given prime number p which have no common factor with p except 1.

Well as p is a prime, all positive numbers less than p have no common factors with p (except common factor 1). So there would be p-1 such numbers (as we are looking number of integers less than p).

For example: if p=7 how many numbers are less than 7 having no common factors with 7: 1, 2, 3, 4, 5, 6 --> 7-1=6.

Answer: A.

Hope it's clear.
User avatar
Diver
Joined: 20 Feb 2013
Last visit: 11 Apr 2020
Posts: 142
Own Kudos:
Given Kudos: 24
GMAT 1: 720 Q48 V42
GMAT 1: 720 Q48 V42
Posts: 142
Kudos: 37
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hi, still not clear why answer to the 2nd ques should be P-1 and not P-2. Shouldn't both P and 1 be deducted from the set?
   1   2   3   
Moderators:
Math Expert
105408 posts
Tuck School Moderator
805 posts