Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

It is currently 21 Jul 2019, 05:58

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

The “connection” between any two positive integers a and b

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Manager
Manager
avatar
Joined: 25 Nov 2011
Posts: 158
Location: India
Concentration: Technology, General Management
GPA: 3.95
WE: Information Technology (Computer Software)
The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 29 Feb 2012, 09:24
1
1
22
00:00
A
B
C
D
E

Difficulty:

  55% (hard)

Question Stats:

65% (02:52) correct 35% (02:48) wrong based on 342 sessions

HideShow timer Statistics


The “connection” between any two positive integers a and b is the ratio of the smallest common multiple of a and b to the product of a and b. For instance, the smallest common multiple of 8 and 12 is 24, and the product of 8 and 12 is 96, so the connection between 8 and 12 is 24/96 = 1/4

The positive integer y is less than 20 and the connection between y and 6 is equal to 1/1. How many possible values of y are there?

A. 7
B. 8
C. 9
D. 10
E. 11

_________________
-------------------------
-Aravind Chembeti
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56306
Re: Problem related to LCM  [#permalink]

Show Tags

New post 29 Feb 2012, 10:12
5
5
Chembeti wrote:
The “connection” between any two positive integers a and b is the ratio of the smallest common multiple of a and b to the product of a and b. For instance, the smallest common multiple of 8 and 12 is 24, and the product of 8 and 12 is 96, so the connection between 8 and 12 is 24/96 = 1/4

The positive integer y is less than 20 and the connection between y and 6 is equal to 1/1. How many possible values of y are there?

A. 7
B. 8
C. 9
D. 10
E. 11


Since “connection” between y and 6 is 1/1 then LCM(6, y)=6y, which means that 6 and y are co-prime (they do not share any common factor but 1), because if the had any common factor but 1 then LCM(6, y) would be less than 6y.

So, we should check how many integers less than 20 are co-prime with 6, which can be rephrased as how many integers less than 20 are not divisible by 2 or 3 (6=2*3).

There are (18-2)/2+1=9 multiples of 2 in the range from 0 to 20, not inclusive;
There are (18-3)/3+1=6 multiples of 3 in the range from 0 to 20, not inclusive;
There are 3 multiples of 6 in the range from 0 to 20, not inclusive (6, 12, 18) - overlap of the above two sets;
Total multiples of 2 or 6 in the range from 0 to 20, not inclusive is 9+6-3=12;

Total integers in the range from 0 to 20, not inclusive is 19;

Hence, there are total of 19-12=7 numbers which have no common factor with 6 other than 1: 1, 5, 7, 11, 13, 17 and 19.

Answer: A.
_________________
General Discussion
Intern
Intern
avatar
Joined: 09 Sep 2012
Posts: 28
Location: United States
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 21 Sep 2012, 10:54
Hi,
Can you please explain what method have you used below:

There are (18-2)/2+1=9 multiples of 2 in the range from 0 to 20, not inclusive;
There are (18-3)/3+1=6 multiples of 3 in the range from 0 to 20, not inclusive;


Thanks
Senior Manager
Senior Manager
avatar
Joined: 06 Aug 2011
Posts: 329
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 22 Sep 2012, 03:10
I took apprx 3 to 3.5 min to solve this question..

i tried every posibility from 1 to 7 then i get at that point , what bunuel saying ...num should not b multiple of 2 and 3...

1,5,7,11,13,17,19... all primes less than 20 except 2 and 3.
_________________
Bole So Nehal.. Sat Siri Akal.. Waheguru ji help me to get 700+ score !
Senior Manager
Senior Manager
avatar
Joined: 15 Sep 2011
Posts: 319
Location: United States
WE: Corporate Finance (Manufacturing)
GMAT ToolKit User
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 27 Jun 2015, 10:22
Bunuel wrote:
Chembeti wrote:
The “connection” between any two positive integers a and b is the ratio of the smallest common multiple of a and b to the product of a and b. For instance, the smallest common multiple of 8 and 12 is 24, and the product of 8 and 12 is 96, so the connection between 8 and 12 is 24/96 = 1/4

The positive integer y is less than 20 and the connection between y and 6 is equal to 1/1. How many possible values of y are there?

A. 7
B. 8
C. 9
D. 10
E. 11


Since “connection” between y and 6 is 1/1 then LCM(6, y)=6y, which means that 6 and y are co-prime (they do not share any common factor but 1), because if the had any common factor but 1 then LCM(6, y) would be less than 6y.

So, we should check how many integers less than 20 are co-prime with 6, which can be rephrased as how many integers less than 20 are not divisible by 2 or 3 (6=2*3).

There are (18-2)/2+1=9 multiples of 2 in the range from 0 to 20, not inclusive;
There are (18-3)/3+1=6 multiples of 3 in the range from 0 to 20, not inclusive;
There are 3 multiples of 6 in the range from 0 to 20, not inclusive (6, 12, 18) - overlap of the above two sets;
Total multiples of 2 or 6 in the range from 0 to 20, not inclusive is 9+6-3=12;

Total integers in the range from 0 to 20, not inclusive is 19;

Hence, there are total of 19-12=7 numbers which have no common factor with 6 other than 1: 1, 5, 7, 11, 13, 17 and 19.

Answer: A.


Hello,

Could you or someone else elaborate what the value of counting non-inclusive numbers is? After all, it seems if the you know that (6,y) are co-prime, counting the number of primes excluding 2 or 3 would lead to the answer quicker.
Retired Moderator
User avatar
S
Joined: 18 Sep 2014
Posts: 1100
Location: India
GMAT ToolKit User Reviews Badge
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 22 Dec 2015, 12:25
2
The “connection” between any two positive integers a and b is the ratio of

  • the smallest common multiple of a and b ...........i.e., LCM(least common multiple)
  • the product of a and b.


For instance, the smallest common multiple of 8 and 12 is 24, and the product of 8 and 12 is 96, so the connection between 8 and 12 is 24/96 = 1/4

The positive integer y is less than 20 and the connection between y and 6 is equal to 1/1. How many possible values of y are there?

the ratio is 1:1 i.,e., LCM and product are equal.

this can happen only when there is no common factor(other than 1) between y and 6.

since 6 has two factors 2 and 3.

y can have values as all those numbers which are not multiples of 2 and 3 and less than 20.

y={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19}

y={1,5,7,11,13,17,19}

so total 7 values are possible for y..................A is the answer.
Board of Directors
User avatar
P
Joined: 17 Jul 2014
Posts: 2539
Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
GMAT ToolKit User Reviews Badge
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 05 Feb 2016, 19:10
it can be 1/1 only if y is a prime number or 1, otherwise, it will be messed up. 3 won't work here, because LCM of 3 and 6 is 6, and 6/3*6 is not 1/1.
thus, we are left with 1, 5, 7, 11, 13, 17, and 19.
7 options.
_________________
Image
Current Student
User avatar
D
Joined: 12 Aug 2015
Posts: 2609
Schools: Boston U '20 (M)
GRE 1: Q169 V154
GMAT ToolKit User
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 14 Apr 2016, 02:53
1
1
Hey chetan2u can you look at my solution for this one=>

Here connection = LCM / product = 1/HCF
now Connection between Y and ^=1/1
so the HCF must be 1
so the values possible are => 1,5,7,11,13,17,19
So 7 values
Hence A
Am i missing something here ?
_________________
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 7763
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 14 Apr 2016, 03:45
1
1
stonecold wrote:
Hey chetan2u can you look at my solution for this one=>

Here connection = LCM / product = 1/HCF
now Connection between Y and ^=1/1
so the HCF must be 1
so the values possible are => 1,5,7,11,13,17,19
So 7 values
Hence A
Am i missing something here ?


Hi,
you are absolutely correct with the logic and concept behind this Q..
HCF * LCM = product of two numbers..
so IF 'connection' is 1, LCM/(LCM*HCF) is 1 or HCF = 1, as correctly pointed by you..


so Actually we are looking for CO-PRIMES to 6..
factors of 6 are 2 and 3..
in first 19 digits 19/2 or 9 are multiples of 2..
19/3 or 6 are multiple of 3, out of which 19/6 or 3 are already catered for in multiples of 2 above ..
SO total = 19-9-6+3 = 7

_________________
Intern
Intern
avatar
Joined: 21 Oct 2015
Posts: 46
GMAT 1: 620 Q47 V28
GMAT ToolKit User
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 14 Apr 2016, 05:34
Do you guys think that 6 would make a good trap answer here?

I just started this problem by factoring 6 = 2*3. With additional clue that Y should not have these two factors I went on to evaluate subsequent numbers <20 and ended up with 6 numbers. And then, I realized that I didn't count 1.
Current Student
User avatar
D
Joined: 12 Aug 2015
Posts: 2609
Schools: Boston U '20 (M)
GRE 1: Q169 V154
GMAT ToolKit User
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 14 Apr 2016, 07:59
HarisinghKhedar wrote:
Do you guys think that 6 would make a good trap answer here?

I just started this problem by factoring 6 = 2*3. With additional clue that Y should not have these two factors I went on to evaluate subsequent numbers <20 and ended up with 6 numbers. And then, I realized that I didn't count 1.



Maybe ..
P.S => Never ever forget zero or 1
they are core to the gmat..

regards
Stone Cold
_________________
Manager
Manager
avatar
B
Joined: 04 May 2014
Posts: 158
Location: India
WE: Sales (Mutual Funds and Brokerage)
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 07 Aug 2017, 22:36
Can you please elaborate on this concept and thanks in advance

so Actually we are looking for CO-PRIMES to 6..
factors of 6 are 2 and 3..
in first 19 digits 19/2 or 9 are multiples of 2..
19/3 or 6 are multiple of 3, out of which 19/6 or 3 are already catered for in multiples of 2 above ..
SO total = 19-9-6+3 = 7
[/quote



chetan2u wrote:
stonecold wrote:
Hey chetan2u can you look at my solution for this one=>

Here connection = LCM / product = 1/HCF
now Connection between Y and ^=1/1
so the HCF must be 1
so the values possible are => 1,5,7,11,13,17,19
So 7 values
Hence A
Am i missing something here ?


Hi,
you are absolutely correct with the logic and concept behind this Q..
HCF * LCM = product of two numbers..
so IF 'connection' is 1, LCM/(LCM*HCF) is 1 or HCF = 1, as correctly pointed by you..


so Actually we are looking for CO-PRIMES to 6..
factors of 6 are 2 and 3..
in first 19 digits 19/2 or 9 are multiples of 2..
19/3 or 6 are multiple of 3, out of which 19/6 or 3 are already catered for in multiples of 2 above ..
SO total = 19-9-6+3 = 7
Senior Manager
Senior Manager
User avatar
G
Status: love the club...
Joined: 24 Mar 2015
Posts: 274
The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 15 Mar 2018, 19:02
Chembeti wrote:
The “connection” between any two positive integers a and b is the ratio of the smallest common multiple of a and b to the product of a and b. For instance, the smallest common multiple of 8 and 12 is 24, and the product of 8 and 12 is 96, so the connection between 8 and 12 is 24/96 = 1/4

The positive integer y is less than 20 and the connection between y and 6 is equal to 1/1. How many possible values of y are there?

A. 7
B. 8
C. 9
D. 10
E. 11



there are a total of 8 primes (2, 3 ,5 ,7, 11, 13, 17, 19) between 1 and 20 inclusive, and out of these 8 primes, y can take on 6 values, because y cannot be 2 or 3

so there exist 6 values plus 1 = 7 possible values of y

thanks
:cool:
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 11719
Re: The “connection” between any two positive integers a and b  [#permalink]

Show Tags

New post 21 Mar 2019, 09:56
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: The “connection” between any two positive integers a and b   [#permalink] 21 Mar 2019, 09:56
Display posts from previous: Sort by

The “connection” between any two positive integers a and b

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne