GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 18 Jan 2019, 08:32

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in January
PrevNext
SuMoTuWeThFrSa
303112345
6789101112
13141516171819
20212223242526
272829303112
Open Detailed Calendar
• ### Free GMAT Strategy Webinar

January 19, 2019

January 19, 2019

07:00 AM PST

09:00 AM PST

Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.
• ### FREE Quant Workshop by e-GMAT!

January 20, 2019

January 20, 2019

07:00 AM PST

07:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

# The figure shown above consists of three identical circles

 post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
Manager
Joined: 30 May 2010
Posts: 176
The figure shown above consists of three identical circles  [#permalink]

### Show Tags

26 Aug 2010, 22:25
2
15
00:00

Difficulty:

45% (medium)

Question Stats:

76% (01:28) correct 24% (01:48) wrong based on 293 sessions

### HideShow timer Statistics

Attachment:

circles.jpg [ 10.38 KiB | Viewed 26511 times ]
The figure shown above consists of three identical circles that are tangent to each other. If the area of the shaded region is $$64sqrt{3}-32\pi$$, what is the radius of each circle?

(A) 4
(B) 8
(C) 16
(D) 24
(E) 32

OPEN DISCUSSION OF THIS QUESTION IS HERE: the-figure-shown-above-consists-of-three-identical-circles-t-168576.html
Manager
Joined: 30 May 2010
Posts: 176
Re: Geometry problem from QR 2nd PS145  [#permalink]

### Show Tags

26 Aug 2010, 22:29
The triangle formed is equilateral with sides 2r. Therefore the area is $$1/2*2r*r\sqrt{3}$$ = $$r^2sqrt{3}$$. I'm not sure how to proceed after this.
Manager
Joined: 24 Dec 2009
Posts: 174
Re: Geometry problem from QR 2nd PS145  [#permalink]

### Show Tags

26 Aug 2010, 22:34
Area of shaded region = Area of equilateral triangle - 3 * Area of sector

Solve the above equation to find r. Thanks.
Math Expert
Joined: 02 Sep 2009
Posts: 52284
Re: Geometry problem from QR 2nd PS145  [#permalink]

### Show Tags

27 Aug 2010, 05:50
8
7
jpr200012 wrote:
The figure shown above consists of three identical circles that are tangent to each other. If the area of the shaded region is $$64sqrt{3}-32\pi$$, what is the radius of each circle?

(A) 4
(B) 8
(C) 16
(D) 24
(E) 32

Let the radius of the circle be $$r$$, then the side of equilateral triangle will be $$2r$$.

Area of the shaded region equals to area of the equilateral triangle minus area of three 60 degrees sectors.

Area of a 60 degree sector is 1/6 of the are of whole circle (as whole circle is 360 degrees and 60 is 1/6 of it), hence are of 3 such sectors will be 3/6=1/2 of the area of whole circle, so $$area_{sectors}=\frac{\pi{r^2}}{2}$$ (here if you could spot that $$\frac{\pi{r^2}}{2}$$ should correspond to $$32\pi$$ then you can write $$\frac{\pi{r^2}}{2}=32\pi$$ --> $$r=8$$);

Area of equilateral triangle equals to $$a^2\frac{\sqrt{3}}{4}$$, where $$a$$ is the length of a side. So in our case $$area_{equilateral}=(2r)^2*{\frac{\sqrt{3}}{4}}=r^2\sqrt{3}$$;

Area of the shaded region equals to $$64sqrt{3}-32\pi$$, so $$area_{equilateral}-area_{sectors}=r^2\sqrt{3}-\frac{\pi{r^2}}{2}=64sqrt{3}-32\pi$$ --> $$r^2=\frac{2(64sqrt{3}-32\pi)}{2\sqrt{3}-\pi}=\frac{64(2\sqrt{3}-\pi)}{(2\sqrt{3}-\pi)}=64$$ --> $$r=8$$.

Answer: B.
_________________
Manager
Joined: 20 Apr 2010
Posts: 206
Location: Hyderabad
WE 1: 4.6 years Exp IT prof
Re: Geometry problem from QR 2nd PS145  [#permalink]

### Show Tags

27 Aug 2010, 07:35
2
I have a simpler solution to the above explanation your solution rocks but we wont have that much time in the GMAT exam to solve this question anyways
here it goes....
64(3)^1/2 - 32pie is the area of the shaded region hence the area of triangle will be equal to 64(3)^1/2 and area of three corresponding circle is 32pie
i will take the area of triangle you can take the area of circles segments

Therefore, 64(3)^1/2 = area of Equilateral Triangle = ((3)^1/2)/4 * Side^2

Hence (side)^2 = 64*4 = 2^8 ==> Side = 2^4 =16

Remember this is the side of the Triangle
Side of Triangle = 2(Radius of the Circle)
therefore radius of circle = 8
Answer B
_________________

I will give a Fight till the End

"To dream anything that you want to dream, that is the beauty of the human mind. To do anything that you want to do, that is the strength of the human will. To trust yourself, to test your limits, that is the courage to succeed."
- Bernard Edmonds

A person who is afraid of Failure can never succeed -- Amneet Padda

Don't Forget to give the KUDOS

Senior Manager
Joined: 04 Aug 2010
Posts: 320
Schools: Dartmouth College
Re: Geometry problem from QR 2nd PS145  [#permalink]

### Show Tags

27 Aug 2010, 14:33
18
2
Always look at the numbers in the problem and at the answer choices. Do only as much math as needed.

shaded region = triangle - 3 sectors = $$64sqrt{3}-32\pi$$
so 3 sectors = $$32\pi$$
triangle is equilateral because each side = $$2r$$
so each angle = 60, and each sector = 60/360 = 1/6 each circle
so 3 sectors = 3*(1/6) = 1/2 each circle
so $$32\pi$$ = $$\frac{\pi{r^2}}{2}$$
$$r=8$$

The correct answer is B. No need to worry about the area of the triangle.
_________________

GMAT and GRE Tutor
Over 1800 followers
Click here to learn more
GMATGuruNY@gmail.com
New York, NY
If you find one of my posts helpful, please take a moment to click on the "Kudos" icon.
Available for tutoring in NYC and long-distance.
For more information, please email me at GMATGuruNY@gmail.com.

Manager
Status: Current MBA Student
Joined: 19 Nov 2009
Posts: 99
Concentration: Finance, General Management
GMAT 1: 720 Q49 V40
Quant Rev. #145. Difficult triangles/circles problem  [#permalink]

### Show Tags

14 Jan 2011, 10:58
2
What is the quickest way to solve these types of problems. Please advise.

The figure shown (please see attached) consists of three identical circles that are tangent to each other. If the area of the shaded region (center space where the three circles do not touch) is $$64\sqrt{3} - 32\pi$$, what is the radius of each circle?

a. 4
b. 8
c. 16
d. 24
e. 32
Attachments

3circles.png [ 40.68 KiB | Viewed 25882 times ]

Math Expert
Joined: 02 Sep 2009
Posts: 52284
Re: The figure shown above consists of three identical circles  [#permalink]

### Show Tags

06 Mar 2014, 01:36
2
Bumping for review and further discussion.

GEOMETRY: Shaded Region Problems!
_________________
Manager
Joined: 15 Aug 2013
Posts: 247
Re: Geometry problem from QR 2nd PS145  [#permalink]

### Show Tags

25 May 2014, 13:03
Bunuel wrote:
jpr200012 wrote:
The figure shown above consists of three identical circles that are tangent to each other. If the area of the shaded region is $$64sqrt{3}-32\pi$$, what is the radius of each circle?

(A) 4
(B) 8
(C) 16
(D) 24
(E) 32

Let the radius of the circle be $$r$$, then the side of equilateral triangle will be $$2r$$.

Area of the shaded region equals to area of the equilateral triangle minus area of three 60 degrees sectors.

Area of a 60 degree sector is 1/6 of the are of whole circle (as whole circle is 360 degrees and 60 is 1/6 of it), hence are of 3 such sectors will be 3/6=1/2 of the area of whole circle, so $$area_{sectors}=\frac{\pi{r^2}}{2}$$ (here if you could spot that $$\frac{\pi{r^2}}{2}$$ should correspond to $$32\pi$$ then you can write $$\frac{\pi{r^2}}{2}=32\pi$$ --> $$r=8$$);

Area of equilateral triangle equals to $$a^2\frac{\sqrt{3}}{4}$$, where $$a$$ is the length of a side. So in our case $$area_{equilateral}=(2r)^2*{\frac{\sqrt{3}}{4}}=r^2\sqrt{3}$$;

Area of the shaded region equals to $$64sqrt{3}-32\pi$$, so $$area_{equilateral}-area_{sectors}=r^2\sqrt{3}-\frac{\pi{r^2}}{2}=64sqrt{3}-32\pi$$ --> $$r^2=\frac{2(64sqrt{3}-32\pi)}{2\sqrt{3}-\pi}=\frac{64(2\sqrt{3}-\pi)}{(2\sqrt{3}-\pi)}=64$$ --> $$r=8$$.

Answer: B.

Hi Bunuel,

How can you tell that the triangle is an equilateral triangle?

Thanks!
Math Expert
Joined: 02 Sep 2009
Posts: 52284
Re: Geometry problem from QR 2nd PS145  [#permalink]

### Show Tags

25 May 2014, 13:06
1
russ9 wrote:
Bunuel wrote:
jpr200012 wrote:
The figure shown above consists of three identical circles that are tangent to each other. If the area of the shaded region is $$64sqrt{3}-32\pi$$, what is the radius of each circle?

(A) 4
(B) 8
(C) 16
(D) 24
(E) 32

Let the radius of the circle be $$r$$, then the side of equilateral triangle will be $$2r$$.

Area of the shaded region equals to area of the equilateral triangle minus area of three 60 degrees sectors.

Area of a 60 degree sector is 1/6 of the are of whole circle (as whole circle is 360 degrees and 60 is 1/6 of it), hence are of 3 such sectors will be 3/6=1/2 of the area of whole circle, so $$area_{sectors}=\frac{\pi{r^2}}{2}$$ (here if you could spot that $$\frac{\pi{r^2}}{2}$$ should correspond to $$32\pi$$ then you can write $$\frac{\pi{r^2}}{2}=32\pi$$ --> $$r=8$$);

Area of equilateral triangle equals to $$a^2\frac{\sqrt{3}}{4}$$, where $$a$$ is the length of a side. So in our case $$area_{equilateral}=(2r)^2*{\frac{\sqrt{3}}{4}}=r^2\sqrt{3}$$;

Area of the shaded region equals to $$64sqrt{3}-32\pi$$, so $$area_{equilateral}-area_{sectors}=r^2\sqrt{3}-\frac{\pi{r^2}}{2}=64sqrt{3}-32\pi$$ --> $$r^2=\frac{2(64sqrt{3}-32\pi)}{2\sqrt{3}-\pi}=\frac{64(2\sqrt{3}-\pi)}{(2\sqrt{3}-\pi)}=64$$ --> $$r=8$$.

Answer: B.

Hi Bunuel,

How can you tell that the triangle is an equilateral triangle?

Thanks!

The triangle is equilateral because each of its sides is equal to two radii of identical circles.

OPEN DISCUSSION OF THIS QUESTION IS HERE: the-figure-shown-above-consists-of-three-identical-circles-t-168576.html
_________________
Non-Human User
Joined: 09 Sep 2013
Posts: 9427
Re: The figure shown above consists of three identical circles  [#permalink]

### Show Tags

26 Jul 2018, 00:44
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
Re: The figure shown above consists of three identical circles &nbs [#permalink] 26 Jul 2018, 00:44
Display posts from previous: Sort by

# The figure shown above consists of three identical circles

 post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.