Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

The figure shown above consists of three identical circles that are tangent to each other. If the area of the shaded region is \(64\sqrt{3}-32\pi\), what is the radius of each circle?

(A) 4 (B) 8 (C) 16 (D) 24 (E) 32

Problem Solving Question: 145 Category:Geometry Circles; Triangles; Area Page: 81 Difficulty: 600

Each week we'll be posting several questions from The Official Guide For GMAT® Quantitative Review, 2ND Edition and then after couple of days we'll provide Official Answer (OA) to them along with a slution.

We'll be glad if you participate in development of this project: 1. Please provide your solutions to the questions; 2. Please vote for the best solutions by pressing Kudos button; 3. Please vote for the questions themselves by pressing Kudos button; 4. Please share your views on difficulty level of the questions, so that we have most precise evaluation.

The figure shown above consists of three identical circles that are tangent to each other. If the area of the shaded region is \(64\sqrt{3}-32\pi\), what is the radius of each circle?

(A) 4 (B) 8 (C) 16 (D) 24 (E) 32

Let the radius of the circle be \(r\), then the side of equilateral triangle will be \(2r\).

Area of the shaded region equals to area of the equilateral triangle minus area of three 60 degrees sectors.

Area of a 60 degree sector is 1/6 of the are of whole circle (as whole circle is 360 degrees and 60 is 1/6 of it), hence are of 3 such sectors will be 3/6=1/2 of the area of whole circle, so \(area_{sectors}=\frac{\pi{r^2}}{2}\) (here if you could spot that \(\frac{\pi{r^2}}{2}\) should correspond to \(32\pi\) then you can write \(\frac{\pi{r^2}}{2}=32\pi\) --> \(r=8\));

Area of equilateral triangle equals to \(a^2\frac{\sqrt{3}}{4}\), where \(a\) is the length of a side. So in our case \(area_{equilateral}=(2r)^2*{\frac{\sqrt{3}}{4}}=r^2\sqrt{3}\);

Area of the shaded region equals to \(64sqrt{3}-32\pi\), so \(area_{equilateral}-area_{sectors}=r^2\sqrt{3}-\frac{\pi{r^2}}{2}=64sqrt{3}-32\pi\) --> \(r^2=\frac{2(64sqrt{3}-32\pi)}{2\sqrt{3}-\pi}=\frac{64(2\sqrt{3}-\pi)}{(2\sqrt{3}-\pi)}=64\) --> \(r=8\).

Re: The figure shown above consists of three identical circles t [#permalink]

Show Tags

10 Mar 2014, 07:45

2

This post received KUDOS

Option B. The triangle formed by the circles will be an equilateral triangle. Area of triangle=\(\sqrt{3}/4*(side)^2\) And side =2*radius Now area of triangle=area shaded+area of 3 sectors of the circles. Area shaded=given Area of 3 sectors=\(3*[60/360*pi*r^2]\) We'll equate the 2 sides[Area triangle=Area shaded+area of 3 sectors] and simplify to get r=8

Re: The figure shown above consists of three identical circles t [#permalink]

Show Tags

10 Mar 2014, 22:15

9

This post received KUDOS

1

This post was BOOKMARKED

Find the are of equilateral triangle with side as 2r Find the are of the three sectors (eq. trianlge has \(\angle\) = \(60^{\circ}\) ) Subtract both to get the area of shaded region. You will get the equation as

Re: The figure shown above consists of three identical circles t [#permalink]

Show Tags

10 Jun 2015, 11:58

I like the problem and managed to solve it, but my question here is whether staying below 2 mins is doable in this case. Average time for a correct answer shown by the system also confirms, taht most people need about 3 mins?!
_________________

Thank you very much for reading this post till the end! Kudos?

The best approach would be to write down the equations for the area of shaded region and then equate both sides. Your method worked because the final expression was written in the form where you could equate two expressions from LHS and RHS. This may not be the case always and hence is not the best practice to follow.

Also to answer bgpower's question, the final equation can be written as

There are two easy ways to solve the equation for r.

Equating the expression You can see the similarity in expression on both sides of the equation and can equate \(\frac{πr^2}{2} = 32π\) or \(\sqrt{3}r^2 = 64\sqrt{3}\) . This would give you the value of \(r = 8\).

Solving the equation Alternatively the equation can also be solved very quickly. You just need to be aware of the possibilities of the terms canceling out.

The equation can be written as \(r^2 =\) (\(64\sqrt{3} - 32π)/(\sqrt{3}- \frac{π}{2})\)

If we take \(64\) common from the numerator we will have the expression as \(r^2 =\) \(64 *( \sqrt{3} - \frac{π}{2})/(\sqrt{3}- \frac{π}{2})\) thus resulting in \(r^2 = 64\) and \(r = 8\)

So with the above approach, it is possible to solve the question in less than 2 minutes.

Re: The figure shown above consists of three identical circles t [#permalink]

Show Tags

03 Oct 2015, 10:24

I understand the explanation until I was stuck in the formula. It took me exactly 4 minutes to figure out how to do the calculation. 64\(\sqrt{3}\) - 32phi = r2\(\sqrt{3}\) - 1/2 phi. r2 then you want to multiple both sides with 2 to eliminate 1/2 2(64\sqrt{3} - 32phi) = r2 (2\sqrt{3} - phi)

Re: The figure shown above consists of three identical circles t [#permalink]

Show Tags

22 Nov 2015, 17:52

I used guesstimation which works for people who suck at math like me.

All you need to know is √3 = 1.7 pi=3.14

64*1.7 - 32*3.14

Is more or less 8

The shaded region is about (1/4) of the triangle so a^2(√3/4)=4*8 a^2 = 32*(4/√3) a^2 = 128/1.7 is less than 260 but more than 192 16*16=256 so r = 16/2 = 8

The figure shown above consists of three identical circles that are tangent to each other. If the area of the shaded region is \(64\sqrt{3}-32\pi\), what is the radius of each circle?

(A) 4 (B) 8 (C) 16 (D) 24 (E) 32

Problem Solving Question: 145 Category:Geometry Circles; Triangles; Area Page: 81 Difficulty: 600

Each week we'll be posting several questions from The Official Guide For GMAT® Quantitative Review, 2ND Edition and then after couple of days we'll provide Official Answer (OA) to them along with a slution.

We'll be glad if you participate in development of this project: 1. Please provide your solutions to the questions; 2. Please vote for the best solutions by pressing Kudos button; 3. Please vote for the questions themselves by pressing Kudos button; 4. Please share your views on difficulty level of the questions, so that we have most precise evaluation.

Thank you!

This problem is definitely not 600-level difficulty. Not even close.

Anyway, that said, the solution can be worked out as follows. The side of the equilateral triangle has length 2r. So that means the area of the equilateral triangle is (2r)^2*sqrt(3)/4 = r^2*sqrt(3)

We know that the area of the shaded region is the area of the triangle minus the area of three sectors of 60 degrees each. The next logical step is to realize that three sectors of equal circles of 60 degrees will sweep an area equal to half the circle's area (60*3 = 180 degrees). So if the area of the circle is pi*r^2, then we know that the area of half the circle is pi*r^2/2. This combined sector area is equal to 32pi.

32pi = pi r^2/2 64pi = r^2*pi 64 = r^2 8 = r.

It's probably best to stop here, but you can also solve for 8 via the triangle area method:

Re: The figure shown above consists of three identical circles t [#permalink]

Show Tags

09 Oct 2017, 11:45

Area of shaded = area of triangle - the sum of the sectors area of shaded = 64\sqrt{3} - 32pi area of triangle = 1/2(2r)(r\sqrt{3}) = r^2 \sqrt{3} sum of the sectors = (3(60/360 x pi r^2))

64\sqrt{3} - 32pi = r^2\sqrt{3} - (3(1/6 x pi r^2)) 1/2 x 3r^2 = r^2 - 64 + 32 3r^2 = 2r^2 - 128 + 64 r^2 = -64

The figure shown above consists of three identical circles that are tangent to each other. If the area of the shaded region is \(64\sqrt{3}-32\pi\), what is the radius of each circle?

(A) 4 (B) 8 (C) 16 (D) 24 (E) 32

We can let each radius = r, and so the side of each triangle = 2r.

Notice that the area of the equilateral triangle consists of the central shaded region and three identical circular sectors, each of which is a 60-degree sector from its circle. Using this information, we can create the following equation:

(Area of equilateral triangle) - (3 x area of 1/6 of each circle) = area of shaded region

(2r)^2√3/4 - 3(1/6 x π r^2) = 64√3 − 32π

[(4r^2)√3]/4 - (πr^2)/2 = 64√3 − 32π

(r^2)√3 - (πr^2)/2 = 64√3 − 32π

Multiplying both sides by 2, we have:

2(r^2)√3 - πr^2 = 128√3 − 64π

r^2(2√3 - π) = 128√3 − 64π

Dividing both sides by (2√3 - π), we have:

r^2 = 64

r = 8

Answer: B
_________________

Jeffery Miller Head of GMAT Instruction

GMAT Quant Self-Study Course 500+ lessons 3000+ practice problems 800+ HD solutions