It is currently 20 Nov 2017, 14:48

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

The measurements obtained for the interior dimensions of a

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42269

Kudos [?]: 132827 [0], given: 12378

Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 22 Jan 2017, 10:17
Expert's post
1
This post was
BOOKMARKED
Mo2men wrote:
Bunuel wrote:
imhimanshu wrote:
The measurements obtained for the interior dimensions of a rectangular box are 200 cm by 200 cm by 300cm. If each of the three measurements has an error of at most 1 centimeter, which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements?

A. 100,000
B. 120,000
C. 160,000
D. 200,000
E. 320,000


The options are well spread so we can approximate.
Changing the length by 1 cm results in change of the volume by 1*200*300 = 60,000 cubic centimeters;
Changing the width by 1 cm results in change of the volume by 200*1*300 = 60,000 cubic centimeters;
Changing the height by 1 cm results in change of the volume by 200*200*1 = 40,000 cubic centimeters.

So, approximate maximum possible difference is 60,000 + 60,000 + 40,000 = 160,000 cubic centimeters.

Answer: C.


is not it kind of overlapping? each dimension is included in 2 of the 3 products above.

Can you clarify please?


Check the first sentence of the solution.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132827 [0], given: 12378

Intern
Intern
avatar
B
Joined: 29 Dec 2015
Posts: 10

Kudos [?]: 1 [0], given: 0

Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 24 Jan 2017, 23:59
Bunuel

i took this measurement as 21 21 31 and 20 20 30 and i computed to get 1671 ,is this approximation okay??

Kudos [?]: 1 [0], given: 0

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 42269

Kudos [?]: 132827 [0], given: 12378

Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 25 Jan 2017, 05:53
jayantheinstein wrote:
Bunuel

i took this measurement as 21 21 31 and 20 20 30 and i computed to get 1671 ,is this approximation okay??


Here it worked because again the options are well spread but your way has one flaw: 1 centimetre for 20 is 5% while 1 centimetre for 200 is 0.5%, so for other similar questions it could give much more skewed result.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 132827 [0], given: 12378

Intern
Intern
avatar
B
Joined: 11 Oct 2015
Posts: 11

Kudos [?]: [0], given: 11

Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 12 Feb 2017, 12:54
Hi all,

I understand Bunuel's method to the solution, but I'm wondering where my logic is off. Could someone please help here?

Largest difference between capacities = (200*200*300) - [(199*199*299)]

Solved by multiplying (200-1)*(200-1) = (some #), and then (some #)*(300-1).

However, final answer is off. Could someone please explain my gap in logic?

Thank you!

Kudos [?]: [0], given: 11

Manager
Manager
avatar
B
Joined: 14 Jul 2014
Posts: 191

Kudos [?]: 19 [0], given: 110

Location: United States
GMAT 1: 600 Q48 V27
GMAT 2: 720 Q50 V37
GPA: 3.2
Reviews Badge
Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 07 Mar 2017, 19:12
So I got E because I thought I had to find the difference between the max and minimum possible values and I see that some people also followed the same logic. ( 201*201*301 - 199*199*299). Was breaking my head trying to see Bunuel's point and then re-read the question only to realize the error in my understanding. :D

Posted from my mobile device

Kudos [?]: 19 [0], given: 110

Manager
Manager
avatar
S
Joined: 13 Dec 2013
Posts: 172

Kudos [?]: 28 [0], given: 122

Location: United States (NY)
Concentration: Nonprofit, International Business
GMAT 1: 710 Q46 V41
GMAT 2: 720 Q48 V40
GPA: 4
WE: Consulting (Consulting)
Reviews Badge
The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 01 Apr 2017, 16:27
Bunuel wrote:
imhimanshu wrote:
The measurements obtained for the interior dimensions of a rectangular box are 200 cm by 200 cm by 300cm. If each of the three measurements has an error of at most 1 centimeter, which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements?

A. 100,000
B. 120,000
C. 160,000
D. 200,000
E. 320,000


The options are well spread so we can approximate.

Changing the length by 1 cm results in change of the volume by 1*200*300 = 60,000 cubic centimeters;
Changing the width by 1 cm results in change of the volume by 200*1*300 = 60,000 cubic centimeters;
Changing the height by 1 cm results in change of the volume by 200*200*1 = 40,000 cubic centimeters.

So, approximate maximum possible difference is 60,000 + 60,000 + 40,000 = 160,000 cubic centimeters.

Answer: C.


Why is the difference not (201x201x301)-(199x199x299)? Is it because of this wording: "each of the three measurements has an error of at most 1 centimeter"? Therefore, the difference between the actual and given dimensions can be max. 1cm?

The wording is different from saying that a measurement has a margin of error of 1cm, which would mean that the difference could be +/- 1cm from the given values, correct?

Kudos [?]: 28 [0], given: 122

Manager
Manager
avatar
B
Joined: 14 Jul 2014
Posts: 191

Kudos [?]: 19 [0], given: 110

Location: United States
GMAT 1: 600 Q48 V27
GMAT 2: 720 Q50 V37
GPA: 3.2
Reviews Badge
Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 01 Apr 2017, 18:54
Cez005 wrote:


Why is the difference not (201x201x301)-(199x199x299)? Is it because of this wording: "each of the three measurements has an error of at most 1 centimeter"? Therefore, the difference between the actual and given dimensions can be max. 1cm?

The wording is different from saying that a measurement has a margin of error of 1cm, which would mean that the difference could be +/- 1cm from the given values, correct?

The question is:
which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements

The actual capacity will be 200*200*300. So we have to calculate the volume for two cases and determine which case will result in the maximum difference.

Posted from my mobile device

Kudos [?]: 19 [0], given: 110

Manager
Manager
avatar
S
Joined: 13 Dec 2013
Posts: 172

Kudos [?]: 28 [0], given: 122

Location: United States (NY)
Concentration: Nonprofit, International Business
GMAT 1: 710 Q46 V41
GMAT 2: 720 Q48 V40
GPA: 4
WE: Consulting (Consulting)
Reviews Badge
Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 03 Apr 2017, 22:53
dina98 wrote:
Cez005 wrote:


Why is the difference not (201x201x301)-(199x199x299)? Is it because of this wording: "each of the three measurements has an error of at most 1 centimeter"? Therefore, the difference between the actual and given dimensions can be max. 1cm?

The wording is different from saying that a measurement has a margin of error of 1cm, which would mean that the difference could be +/- 1cm from the given values, correct?

The question is:
which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements

The actual capacity will be 200*200*300. So we have to calculate the volume for two cases and determine which case will result in the maximum difference.

Posted from my mobile device


You have to maximize the difference and that will be the answer. Comparing different cases isn't the correct approach...

Kudos [?]: 28 [0], given: 122

Intern
Intern
avatar
B
Joined: 24 Oct 2016
Posts: 13

Kudos [?]: 1 [0], given: 11

Location: India
WE: Research (Investment Banking)
Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 01 May 2017, 10:49
300*200*200=12,000,000

299*199*199=(300-1)*(200-1)*(200-1)
Solve individually we get:
(60000-200-300+1)*(200-1)
=(60000-500)*(200-1) I have ignored the 1 above in coz we need the approx value

Solving we get 1200000-100000-60000

Total difference = 160,000 (C)

Kudos [?]: 1 [0], given: 11

Manager
Manager
avatar
B
Joined: 23 Dec 2013
Posts: 235

Kudos [?]: 14 [0], given: 21

Location: United States (CA)
GMAT 1: 760 Q49 V44
GPA: 3.76
Re: The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 22 Jul 2017, 18:03
imhimanshu wrote:
The measurements obtained for the interior dimensions of a rectangular box are 200 cm by 200 cm by 300cm. If each of the three measurements has an error of at most 1 centimeter, which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements?

A. 100,000
B. 120,000
C. 160,000
D. 200,000
E. 320,000


This problem can be approximated as follows:

1cm change in the length = 1*200*300 = 60,000
1cm change in width = 200*1*300 = 60,000
1cm change in height = 200:200*1 = 40,000

2*60,000 + 40,000 = 160,000.

Kudos [?]: 14 [0], given: 21

Manager
Manager
User avatar
B
Joined: 12 Dec 2016
Posts: 93

Kudos [?]: 6 [0], given: 43

The measurements obtained for the interior dimensions of a [#permalink]

Show Tags

New post 14 Oct 2017, 09:20
Bunuel wrote:
imhimanshu wrote:
Hello Bunuel,
Sorry, but I dont understand the solution.
I thought,since it is given that the dimensions have at most an error of 1 cm. So maximum possible difference in volume would be: (201* 201 * 301) - (200 *200*300). Pls suggest what i am doing wrong.

Posted from my mobile device


Yes, that's correct. But the way I suggested gives and approximate answer which is much easier to calculate than (201*201*301) - (200*200*300)= 160,701.



Yep. The numbers themselves and "closest to maximum" suggest finding a simple way and approximation does just that.
_________________

Give me kudos and see what happens to your GMAT score :-)

Kudos [?]: 6 [0], given: 43

The measurements obtained for the interior dimensions of a   [#permalink] 14 Oct 2017, 09:20

Go to page   Previous    1   2   [ 31 posts ] 

Display posts from previous: Sort by

The measurements obtained for the interior dimensions of a

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.