GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 23 May 2019, 10:12 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here. ### Request Expert Reply # The measurements obtained for the interior dimensions of a

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Senior Manager  Joined: 07 Sep 2010
Posts: 256
The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

15
128 00:00

Difficulty:   75% (hard)

Question Stats: 61% (02:19) correct 39% (02:39) wrong based on 807 sessions

### HideShow timer Statistics

The measurements obtained for the interior dimensions of a rectangular box are 200 cm by 200 cm by 300cm. If each of the three measurements has an error of at most 1 centimeter, which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements?

A. 100,000
B. 120,000
C. 160,000
D. 200,000
E. 320,000
##### Most Helpful Expert Reply
Math Expert V
Joined: 02 Sep 2009
Posts: 55266
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

137
93
imhimanshu wrote:
The measurements obtained for the interior dimensions of a rectangular box are 200 cm by 200 cm by 300cm. If each of the three measurements has an error of at most 1 centimeter, which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements?

A. 100,000
B. 120,000
C. 160,000
D. 200,000
E. 320,000

The options are well spread so we can approximate.

Changing the length by 1 cm results in change of the volume by 1*200*300 = 60,000 cubic centimeters;
Changing the width by 1 cm results in change of the volume by 200*1*300 = 60,000 cubic centimeters;
Changing the height by 1 cm results in change of the volume by 200*200*1 = 40,000 cubic centimeters.

So, approximate maximum possible difference is 60,000 + 60,000 + 40,000 = 160,000 cubic centimeters.

Answer: C.
_________________
##### Most Helpful Community Reply
Intern  Joined: 23 Jan 2013
Posts: 6
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

53
8
I have done it using an alternative solution, Bunuel please correct me if my logic is wrong:

L: 200, 1cm is a deviation of 0,5%
W: 200, 1cm is a deviation of 0,5%
H: 300, 1cm is a deviation of 0,33%

Summing up the deviation percentages, we obtain a total maximum deviation of 1,33%.
Given that the volume 200*200*300 equals to 12,000,000 we can conclude that 1,33% of this number is around 160,000.

Thanks!

P.M.
##### General Discussion
Senior Manager  Joined: 07 Sep 2010
Posts: 256
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

2
Hello Bunuel,
Sorry, but I dont understand the solution.
I thought,since it is given that the dimensions have at most an error of 1 cm. So maximum possible difference in volume would be: (201* 201 * 301) - (200 *200*300). Pls suggest what i am doing wrong.

Posted from my mobile device
Math Expert V
Joined: 02 Sep 2009
Posts: 55266
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

5
1
imhimanshu wrote:
Hello Bunuel,
Sorry, but I dont understand the solution.
I thought,since it is given that the dimensions have at most an error of 1 cm. So maximum possible difference in volume would be: (201* 201 * 301) - (200 *200*300). Pls suggest what i am doing wrong.

Posted from my mobile device

Yes, that's correct. But the way I suggested gives and approximate answer which is much easier to calculate than (201*201*301) - (200*200*300)= 160,701.
_________________
Senior Manager  Joined: 07 Sep 2010
Posts: 256
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

4
Bunuel wrote:
Yes, that's correct. But the way I suggested gives and approximate answer which is much easier to calculate than (201*201*301) - (200*200*300)= 160,701.

Thanks Bunuel for the clarification. However, my solution assumes that the error of 1 cm would lead to increase in the dimensions of the boxes.
Can it be possible that the resultant volume would be bigger had I taken the values(200*200*300) - (199*199*299)?
I mean is there any number property that justifies that the difference would be always be bigger in the following case

If x<y<z , where x,y and z are positive numbers
then y-x< z-y .

according to this question, we can assume that :
x = (199*199*299)
y = (200*200*300)
z= (201*201*301)

Is it always treue -

(200*200*300) - (199*199*299) < (201*201*301) - (200*200*300)
Please clarify.
Intern  Joined: 08 Aug 2011
Posts: 21
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

2
I had the same doubt initially as well, but then I considered an easier problem and the relationship became clear; you can prove it to yourself by considering the behavior of the area of squares, and then extrapolate that result to cuboids. Consider the area of squares with sides 1, 2, and 3; the areas woukd be 1, 4, 9. As you increase the side by one unit, the /absolute/ difference becomes increasingly large (note, however, that the /percentage/ increase becomes increasingly small).

Algebraically, and letting the length of the side be x, you can represent this difference as (x + 1)^2 - x^2 = 2x + 1.

In other words, the difference is 1 greater than twice the initial length (x), ie, it is a function /of the initial length/.

You can extrapolate this result to n dimensions, including three.

Posted from my mobile device
Math Expert V
Joined: 02 Sep 2009
Posts: 55266
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

4
imhimanshu wrote:
Bunuel wrote:
Yes, that's correct. But the way I suggested gives and approximate answer which is much easier to calculate than (201*201*301) - (200*200*300)= 160,701.

Thanks Bunuel for the clarification. However, my solution assumes that the error of 1 cm would lead to increase in the dimensions of the boxes.
Can it be possible that the resultant volume would be bigger had I taken the values(200*200*300) - (199*199*299)?
I mean is there any number property that justifies that the difference would be always be bigger in the following case

If x<y<z , where x,y and z are positive numbers
then y-x< z-y .

according to this question, we can assume that :
x = (199*199*299)
y = (200*200*300)
z= (201*201*301)

Is it always treue -

(200*200*300) - (199*199*299) < (201*201*301) - (200*200*300)
Please clarify.

The red part is not always true:
Consider this: x=1, y=100, and z=101.

As for the other point:
Yes, (200*200*300) - (199*199*299) < (201*201*301) - (200*200*300) but $$(200*200*300) - (199*199*299) \approx{ (201*201*301) - (200*200*300)}$$, so you can get the answer no matter which case you consider.

My solution deals with this problem conceptually, to get approximate maximum difference, which allows to avoid calculation of (200*200*300) - (199*199*299) or (201*201*301) - (200*200*300).

Hope it helps.
_________________
Intern  Joined: 28 Jan 2013
Posts: 8
Location: India
Concentration: Strategy, Finance
GMAT 1: 660 Q46 V35 GPA: 3.6
WE: Business Development (Energy and Utilities)
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

1
Bunuel wrote:
imhimanshu wrote:
The measurements obtained for the interior dimensions of a rectangular box are 200 cm by 200 cm by 300cm. If each of the three measurements has an error of at most 1 centimeter, which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements?

A. 100,000
B. 120,000
C. 160,000
D. 200,000
E. 320,000

Changing the length by 1 cm results in change of the volume by 1*200*300 = 60,000 cubic centimeters;
Changing the width by 1 cm results in change of the volume by 200*1*300 = 60,000 cubic centimeters;
Changing the height by 1 cm results in change of the volume by 200*200*1 = 40,000 cubic centimeters.

So, approximate maximum possible difference is 60,000 + 60,000 + 40,000 = 160,000 cubic centimeters.

Answer: C.

Great explanation Bunuel. K+1 from me.  Intern  Joined: 24 Nov 2012
Posts: 2
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

13
3
Based on (a+b)^2 formula:

Calculated volume = 200 * 200 * 300 = 200 ^ 2 * 300

Actual volume = 201 * 201 * 301
= (200 + 1)^2 * (300 + 1)
= (200^2 + 1 + 400) * (300 + 1)
= 200^2 * 300 + 300 + 400 * 300 + 200^2 + 1 + 400

Actual volume - calculated volume = 300 + 120000+ 40000 + 1 + 400 = 160,701 ~ 160,000 (C)
Manager  Joined: 23 Jan 2013
Posts: 132
Concentration: Technology, Other
Schools: Berkeley Haas
GMAT Date: 01-14-2015
WE: Information Technology (Computer Software)
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

2
1
Consider X , Y , Z as original sides of the rectangular box .
Now X-1 , Y -1 , Z -1 or X + 1 , Y + 1 , Z + 1 are the new sides .

Difference in volume = ( X-1 ) ( Y - 1 ) ( Z - 1 ) - XYZ .
= XYZ + XY + YZ + ZX + 1 - X - Y - Z - XYZ .
= XY + YZ + ZX + 1 - ( X + Y + Z )
= 200*200 + 200 * 300 + 200 * 300 + 1 - ( 200 + 300 + 200 )
= 160001 - 700
= 159301
Hence C . or 16701 if taken otherwise
Manager  Status: How easy it is?
Joined: 09 Nov 2012
Posts: 89
Location: India
Concentration: Operations, General Management
GMAT 1: 650 Q50 V27 GMAT 2: 710 Q49 V37 GPA: 3.5
WE: Operations (Other)
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

Bunuel, can you please suggest some problems of this type, if any?
Math Expert V
Joined: 02 Sep 2009
Posts: 55266
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

11
17
Intern  Joined: 28 Aug 2014
Posts: 1
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

2
For those of you familiar with derivatives from calculus can use it to arrive at the same conclusion as Bunuel stated at the beginning.
Lets assume the following for the rectangular box,
length(l) = 200, breadth(b) = 200, height(h) = 300

Since Volume (V) = lxbxh,
taking its derivative we get the following,

dV = bxhxdl + lxhxdb + lxbxdh (here dl, db,dh refers to the difference in measurement of the length, breadth and height)

Hence, dV (which is the difference in the volume) = 200x300x1 + 200x300x1 + 200x200x1 = 160000

Answer : C
Manager  Joined: 10 May 2014
Posts: 138
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

Bunuel wrote:
imhimanshu wrote:
The measurements obtained for the interior dimensions of a rectangular box are 200 cm by 200 cm by 300cm. If each of the three measurements has an error of at most 1 centimeter, which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements?

A. 100,000
B. 120,000
C. 160,000
D. 200,000
E. 320,000

The options are well spread so we can approximate.

Changing the length by 1 cm results in change of the volume by 1*200*300 = 60,000 cubic centimeters;
Changing the width by 1 cm results in change of the volume by 200*1*300 = 60,000 cubic centimeters;
Changing the height by 1 cm results in change of the volume by 200*200*1 = 40,000 cubic centimeters.

So, approximate maximum possible difference is 60,000 + 60,000 + 40,000 = 160,000 cubic centimeters.

Answer: C.

Hi Bunuel,

Thanks for this explanation. I had set an algebraic approach and I wanted to take out common factor but at some point I didn´t know how to go on.

Algebraic approach
(301) (201) (201) - (300) (200) (200)
(200 + 101) (200 + 1) (200 + 1) - (200 + 100) (200) (200)

I know that the 200 of both the computed capacity and the actual capacity can be factored out, but I don´t know how to go on.

Would you please help here? I know that this can be helpful for other similar questions.

Thank you so much,
_________________
Consider giving me Kudos if I helped, but don´t take them away if I didn´t! What would you do if you weren´t afraid?
Intern  Joined: 11 Aug 2014
Posts: 9
Location: United States
Concentration: International Business, Entrepreneurship
Schools: HBS '18
GPA: 3.9
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

Bunuel , Any similar questions on CUBE ?

Thanks
Intern  Joined: 09 Dec 2013
Posts: 22
Concentration: Entrepreneurship, Finance
GMAT 1: 570 Q45 V24 GMAT 2: 660 Q47 V34 GPA: 3.36
WE: Engineering (Manufacturing)
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

Hi there,

The questions states that there is a 1 cm error to each of the measurements.

So can we assume that the error is +-1cm?

So the answer is 201*201*301-199*199*299?

Thanks,
Intern  S
Joined: 20 Jul 2012
Posts: 24
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

2
imhimanshu wrote:
Hello Bunuel,
Sorry, but I dont understand the solution.
I thought,since it is given that the dimensions have at most an error of 1 cm. So maximum possible difference in volume would be: (201* 201 * 301) - (200 *200*300). Pls suggest what i am doing wrong.

Posted from my mobile device

Hello All,
I still have a doubt here. The error can be atmost 1 cm i.e +- 1cm .
Therefore to maximize the difference between the Actual and the faulty volume can be (201 x 201 x 301) - (199 x 199 x 299).
Then why in the above post have we assumed the (200 x 200 x 300), when we can further maximize the difference and get the value. Unfortunately this is not yielding the correct answer either.
Thus, Can someone please help out.

Regards.
_________________
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Mega collection of All RCs from GMAT, GRE & LSAT https://gmatclub.com/forum/mega-rc-collection-from-gmat-gre-lsat-273512.html
Mega collection of CRs from various sources (including LSAT) https://gmatclub.com/forum/mega-critical-reasoning-cr-collection-274044.html
Math Expert V
Joined: 02 Sep 2009
Posts: 55266
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

grsm wrote:
imhimanshu wrote:
Hello Bunuel,
Sorry, but I dont understand the solution.
I thought,since it is given that the dimensions have at most an error of 1 cm. So maximum possible difference in volume would be: (201* 201 * 301) - (200 *200*300). Pls suggest what i am doing wrong.

Posted from my mobile device

Hello All,
I still have a doubt here. The error can be atmost 1 cm i.e +- 1cm .
Therefore to maximize the difference between the Actual and the faulty volume can be (201 x 201 x 301) - (199 x 199 x 299).
Then why in the above post have we assumed the (200 x 200 x 300), when we can further maximize the difference and get the value. Unfortunately this is not yielding the correct answer either.
Thus, Can someone please help out.

Regards.

Check this: http://gmatclub.com/forum/the-measureme ... l#p1270826
_________________
SVP  V
Joined: 26 Mar 2013
Posts: 2176
Re: The measurements obtained for the interior dimensions of a  [#permalink]

### Show Tags

1
Bunuel wrote:
imhimanshu wrote:
The measurements obtained for the interior dimensions of a rectangular box are 200 cm by 200 cm by 300cm. If each of the three measurements has an error of at most 1 centimeter, which of the following is the closes maximum possible difference, in cubic centimeters, between the actual capacity of the box and the capacity computed using these measurements?

A. 100,000
B. 120,000
C. 160,000
D. 200,000
E. 320,000

The options are well spread so we can approximate.

Changing the length by 1 cm results in change of the volume by 1*200*300 = 60,000 cubic centimeters;
Changing the width by 1 cm results in change of the volume by 200*1*300 = 60,000 cubic centimeters;
Changing the height by 1 cm results in change of the volume by 200*200*1 = 40,000 cubic centimeters.

So, approximate maximum possible difference is 60,000 + 60,000 + 40,000 = 160,000 cubic centimeters.

Answer: C.

is not it kind of overlapping? each dimension is included in 2 of the 3 products above.

Can you clarify please? Re: The measurements obtained for the interior dimensions of a   [#permalink] 22 Jan 2017, 09:36

Go to page    1   2    Next  [ 36 posts ]

Display posts from previous: Sort by

# The measurements obtained for the interior dimensions of a

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.

#### MBA Resources  