GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 22 Jul 2018, 23:14

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

The perimeter of square S is 40. Square T is inscribed in square S.

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

2 KUDOS received
Intern
Intern
avatar
Joined: 03 Feb 2014
Posts: 9
The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post Updated on: 09 Feb 2014, 01:08
2
7
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

68% (01:14) correct 32% (01:16) wrong based on 232 sessions

HideShow timer Statistics

The perimeter of square S is 40. Square T is inscribed in square S. What is the least possible value of the area of square T ?

A. 45
B. 48
C. 49
D. 50
E. 52

Originally posted by Fabino26 on 08 Feb 2014, 06:55.
Last edited by Fabino26 on 09 Feb 2014, 01:08, edited 1 time in total.
Most Helpful Community Reply
5 KUDOS received
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1837
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 05 Mar 2014, 03:42
5
1
Perimeter of square = 40
So length of each side = 10

Area of the square = 100

Area of an (inscribed square) in a square = Half the area of the square

So 100/2 = 50 = Answer D
_________________

Kindly press "+1 Kudos" to appreciate :)

General Discussion
Intern
Intern
User avatar
B
Status: Going the extra mile
Joined: 08 Feb 2014
Posts: 18
Location: Netherlands
Concentration: Strategy, International Business
GMAT 1: 470 Q37 V18
GMAT 2: 570 Q36 V32
GMAT 3: 560 Q37 V30
GMAT 4: 610 Q41 V34
Reviews Badge
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 08 Feb 2014, 12:34
Given that the perimeter of Square 40 , gives you the information that each side is 10.
The case of a square in a square , you can see as square T as a ''diamond'' inside the square S. The midpoint of this square become 5 (in the middle ). The side of this new square can be obtained by the use of Pythagorean 5-5-5*sqrt(2). This gives you the information that the side of area = 5*sqrt(2).

5*sqrt(2)*5*sqrt(2)=50.
_________________

Structural persistence is the key to succes .
Party hard, study harder.

Still bashing, will continue to do so , although it's important to chill aswell ; )
STUDY+CHILL=VICTORY

2 KUDOS received
Manager
Manager
User avatar
Joined: 11 Jan 2014
Posts: 93
Concentration: Finance, Statistics
GMAT Date: 03-04-2014
GPA: 3.77
WE: Analyst (Retail Banking)
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 08 Feb 2014, 13:30
2
1
Fabino26 wrote:
The perimeter of square S is 40. Square T is inscribed in square AS. What is the least possible value of the area of square T ?

A. 45
B. 48
C. 49
D. 50
E. 52


Consider this picture:

Image


The perimeter of square S is 40 implies each side of S is 10, which also means that diagonal of square S is 10. In the picture, the diagonals of square S, split square T into 4 isosceles right (45-45-90) triangles, which, as you know, have length ratios of \(x:x:x\sqrt{2}\). As you can see, the sides of square T represent the hypotenuse of each of the smaller 4 triangles, thus each side of triangle T has a length of \(5\sqrt{2}.\)

Since the area of the triangle is \(x^2\), \((5\sqrt{2})^2\) = 25*2 = 50, thus choice (D).
Intern
Intern
avatar
Joined: 03 Feb 2014
Posts: 9
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 09 Feb 2014, 01:11
1
Abdul29 wrote:
Fabino26 wrote:
The perimeter of square S is 40. Square T is inscribed in square AS. What is the least possible value of the area of square T ?

A. 45
B. 48
C. 49
D. 50
E. 52


Consider this picture:

Image


The perimeter of square S is 40 implies each side of S is 10, which also means that diagonal of square S is 10. In the picture, the diagonals of square S, split square T into 4 isosceles right (45-45-90) triangles, which, as you know, have length ratios of \(x:x:x\sqrt{2}\). As you can see, the sides of square T represent the hypotenuse of each of the smaller 4 triangles, thus each side of triangle T has a length of \(5\sqrt{2}.\)

Since the area of the triangle is \(x^2\), \((5\sqrt{2})^2\) = 25*2 = 50, thus choice (D).


Thanks for the correction! T is inscribed in square S of course. I edited the question.
1 KUDOS received
Manager
Manager
avatar
Joined: 25 Apr 2014
Posts: 130
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 18 Jun 2014, 06:35
1
Can anybody please explain me that why are we not considering the option of a 7 * 7 square inscribed into the square S as dis would give us the area less than 50.
Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 47188
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 18 Jun 2014, 06:42
2
maggie27 wrote:
Can anybody please explain me that why are we not considering the option of a 7 * 7 square inscribed into the square S as dis would give us the area less than 50.


Square T is inscribed in square S means that the vertices of square T are on the sides of square S. You cannot inscribe a square with sides of 7 into a square with sides of 10.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 25 Apr 2014
Posts: 130
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 18 Jun 2014, 07:09
Thanks much Bunuel :)
1 KUDOS received
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1837
Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 18 Jun 2014, 21:26
1
maggie27 wrote:
Can anybody please explain me that why are we not considering the option of a 7 * 7 square inscribed into the square S as dis would give us the area less than 50.



Also note that area of inscribed square is always half than that of the original square
As Bunuel pointed out, if it goes less than 50, it means some of the vertex is not touching side of the original square.
_________________

Kindly press "+1 Kudos" to appreciate :)

Senior Manager
Senior Manager
avatar
Joined: 15 Sep 2011
Posts: 344
Location: United States
WE: Corporate Finance (Manufacturing)
GMAT ToolKit User
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 01 Jul 2015, 19:04
If \(x^{2}\) is area of square, then find x, one side of the square. If square is inscribed, then diagonal is the length of larger square and therefore the diagonal is \(10\). To determine the side, the formula also includes the area of the square, \(x^{2}\). So, if \(2x^{2} = 100\) then \(x^{2}=50\)

D.

Thanks,
A
Director
Director
User avatar
B
Joined: 04 Jun 2016
Posts: 606
GMAT 1: 750 Q49 V43
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 31 Jul 2016, 21:43
Fabino26 wrote:
The perimeter of square S is 40. Square T is inscribed in square S. What is the least possible value of the area of square T ?

A. 45
B. 48
C. 49
D. 50
E. 52


Perimeter of S= 40 ; side = 10
Now square T area can only be minimum if this 10 is its diagonal
Therefore area of square t = diagonal^2/2 = 100/2 = 50
ANSWER IS D
_________________

Posting an answer without an explanation is "GOD COMPLEX". The world doesn't need any more gods. Please explain you answers properly.
FINAL GOODBYE :- 17th SEPTEMBER 2016. .. 16 March 2017 - I am back but for all purposes please consider me semi-retired.

SVP
SVP
avatar
P
Joined: 12 Dec 2016
Posts: 1868
Location: United States
GMAT 1: 700 Q49 V33
GPA: 3.64
GMAT ToolKit User Premium Member
Re: The perimeter of square S is 40. Square T is inscribed in square S.  [#permalink]

Show Tags

New post 22 Sep 2017, 09:51
first, test takers have to understand that inscribe means the square T touches the square S.
Secondly, using feeling and imagination and experience in geometry, 4 points of T can move on sides of square S. The minimum is if all 4 points are mid-points of sides of square S.

If that is the case, then the area of square T is half of that of square S.
Re: The perimeter of square S is 40. Square T is inscribed in square S. &nbs [#permalink] 22 Sep 2017, 09:51
Display posts from previous: Sort by

The perimeter of square S is 40. Square T is inscribed in square S.

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.