Last visit was: 19 Nov 2025, 07:25 It is currently 19 Nov 2025, 07:25
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
555-605 Level|   Word Problems|                                          
User avatar
Walkabout
Joined: 02 Dec 2012
Last visit: 30 Oct 2025
Posts: 172
Own Kudos:
Given Kudos: 35
Products:
Posts: 172
Kudos: 28,189
 [127]
16
Kudos
Add Kudos
111
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,242
 [42]
24
Kudos
Add Kudos
18
Bookmarks
Bookmark this Post
User avatar
SergeyOrshanskiy
Joined: 12 Jan 2013
Last visit: 11 Aug 2015
Posts: 54
Own Kudos:
145
 [19]
Given Kudos: 13
Location: United States (NY)
GMAT 1: 780 Q51 V47
GPA: 3.89
GMAT 1: 780 Q51 V47
Posts: 54
Kudos: 145
 [19]
16
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
General Discussion
User avatar
geno5
Joined: 05 Dec 2011
Last visit: 29 Mar 2022
Posts: 66
Own Kudos:
99
 [8]
Given Kudos: 2
Location: Canada
Concentration: Accounting, Finance
GMAT Date: 09-08-2012
GPA: 3
Products:
Posts: 66
Kudos: 99
 [8]
7
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Walkabout
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

Back solve and plug in numbers:
x>y
x=4
y=3
A=3lbs, B=5lbs
A=4+3*2=10
B=4+3*4=16 Individually =$26
Together=4+7*3=25

Combined is cheaper and by looking at the answers you can get $1 x-y

Solved in 1min 45 secs so is approachable this way and may seem easier than algebraically, cheers.

Answer:A
User avatar
DelSingh
Joined: 25 Jul 2012
Last visit: 11 Sep 2013
Posts: 54
Own Kudos:
559
 [2]
Given Kudos: 137
Location: United States
Posts: 54
Kudos: 559
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
For me, picking numbers helped the most and talking myself through this question.

x cents for the first pound and y cents for each additional pound

The rule is x>y

(obviously because usually when someone tries to give you a deal they say "buy this thing and get the 2nd thing for a cheaper amount!")

Pick some easy numbers:
x=10 cents
y=5 cents

Given: two packages that are 3 pounds and 5 pounds
Question: What method (combined or separately) is cheaper and how much is saved?


Sending out separate packages:


3 pound package:
1(first cent per pound x) + 2(additional cents per pound y)
1(10)+2(5) = 20

5 pound package:
1(first cent per pound x)+4(additional cents per pound y)
1(10)+4(5) = 30

30+20 = 50



Sending the two packages combined:


Two packages are: 3 pounds + 5 pounds = 8 pounds

8 pound package:
1(first cent per pound x)+7(additional cents per pound y)
1(10) + 7(5) = 45

What's cheaper and by how much?

We realize that the combined (45) is cheaper than the separate(50) package.

It's cheaper by 5 cents or x-y

Answer is A.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,267
Own Kudos:
76,994
 [13]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 76,994
 [13]
11
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
DelSingh
For me, picking numbers helped the most and talking myself through this question.

x cents for the first pound and y cents for each additional pound

The rule is x>y

(obviously because usually when someone tries to give you a deal they say "buy this thing and get the 2nd thing for a cheaper amount!")

Pick some easy numbers:
x=10 cents
y=5 cents

Given: two packages that are 3 pounds and 5 pounds
Question: What method (combined or separately) is cheaper and how much is saved?


Sending out separate packages:


3 pound package:
1(first cent per pound x) + 2(additional cents per pound y)
1(10)+2(5) = 20

5 pound package:
1(first cent per pound x)+4(additional cents per pound y)
1(10)+4(5) = 30

30+20 = 50



Sending the two packages combined:


Two packages are: 3 pounds + 5 pounds = 8 pounds

8 pound package:
1(first cent per pound x)+7(additional cents per pound y)
1(10) + 7(5) = 45

What's cheaper and by how much?

We realize that the combined (45) is cheaper than the separate(50) package.

It's cheaper by 5 cents or x-y

Answer is A.

Number plugging is a great technique. Though, it will be good if you understand the logic too. You could save yourself some time and energy.

Cost of first pound - x cents
Cost of every additional pound - y cents
x > y
So first pound is costlier than every subsequent pound.
Two packets - 3 pounds, 5 pounds

If I have 8 pounds, I should send them together so that there is only one expensive 'first pound'. If I send them separately, I will have two expensive 'first pounds'.
After putting 3 pounds in the packet, if I continue to put the 4th pound in the same packet, I save money on it because it is not the expensive 'first pound' which costs x cents but rather the fourth pound which costs only y cents. The rest of the 4 pounds go as the same y cents rate whether they are sent separately or together.
So the only saving when I send them together is x - y on the fourth pound of the combined packet.
Answer (A)
User avatar
JeffTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 04 Mar 2011
Last visit: 05 Jan 2024
Posts: 2,977
Own Kudos:
8,389
 [2]
Given Kudos: 1,646
Status:Head GMAT Instructor
Affiliations: Target Test Prep
Expert
Expert reply
Posts: 2,977
Kudos: 8,389
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Walkabout
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

We can solve this problem by first creating expressions for the given information. We know that the rate is x cents for the first pound and y cents for each pound after the first. This can be written as:

x + y(t – 1), where t is the number of pounds of the package. Let’s first determine the cost of mailing the two individual packages separately. We start with the 3-pound package:

x + y(3 – 1)

x + y(2)

x + 2y

Next we can determine the cost of mailing the 5-pound package:

x + y(5 – 1)

x + y(4)

x + 4y

Thus, the total cost for the two individual packages (if they are mailed separately) is:

x + 2y + x + 4y = 2x + 6y

Now let's determine the cost of the two packages if they are combined as one package. The combined package would weigh 8 pounds, and its shipping cost would be:

x + y(8 – 1)

x + y(7)

x + 7y

We are given that x > y, and so we see that mailing the packages individually is more costly than mailing them as one combined package. We now need to determine the difference in cost between the two mailing options:

2x + 6y – (x + 7y)

2x + 6y – x – 7y

x – y

Thus, the savings is (x – y) cents when the packages are shipped as one combined package.

Answer A
avatar
Adityam
Joined: 07 Jul 2012
Last visit: 21 Nov 2017
Posts: 22
Own Kudos:
22
 [1]
Given Kudos: 20
Location: United States (IL)
Concentration: Finance, Strategy
WE:Information Technology (Consulting)
Posts: 22
Kudos: 22
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
miweekend
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

A. Combined, with a saving of x-y cents
B. Combined, with a saving of y-x cents
C. Combined, with a saving of x cents
D. Separately, with a saving of x-y cents
E. Separately, with a saving of y cents

If we ship two packages separately it'll cost: \(1x+2y\) for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus \(1x+4y\) for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is \((x+2y)+(x+4y)=2x+6y\);

If we ship them together in one 8pound package it'll cost: \(1x+7y\) (x cents for the first pound and y cents for the additional 7 pounds);

Difference: \(Separately-Together=(2x+6y)-(x+7y)=x-y\) --> as given that \(x>y\) then this difference is positive, which makes shipping together cheaper by \(x-y\) cents.

Answer: A.

Hope it helps.

Hi BB - i cannot understand why we subtracted 'Together' from 'Separately' and not 'Separately' from 'Together'. Can you please help
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
778,242
 [3]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,242
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Adityam
Bunuel
miweekend
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

A. Combined, with a saving of x-y cents
B. Combined, with a saving of y-x cents
C. Combined, with a saving of x cents
D. Separately, with a saving of x-y cents
E. Separately, with a saving of y cents

If we ship two packages separately it'll cost: \(1x+2y\) for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus \(1x+4y\) for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is \((x+2y)+(x+4y)=2x+6y\);

If we ship them together in one 8pound package it'll cost: \(1x+7y\) (x cents for the first pound and y cents for the additional 7 pounds);

Difference: \(Separately-Together=(2x+6y) -(x+7y)=x-y\) --> as given that \(x>y\) then this difference is positive, which makes shipping together cheaper by \(x-y\) cents.

Answer: A.

Hope it helps.

Hi BB - i cannot understand why we subtracted 'Together' from 'Separately' and not 'Separately' from 'Together'. Can you please help

First of all, I'm not bb. bb is completely different person. I'm Bunuel.

Next, the question asks which method is cheaper?

Shipping separately costs (2x+6y) = (x + x + 6y) and shipping together costs (x+7y) = (x + y + 6y). Since we are told that x>y, then (x + x + 6y) > (x + y + 6y), thus shipping together is cheaper and this way we are saving (2x+6y) -(x+7y)=x-y.

Hope it's clear.

P.S. This is explained in highlighted part of my post above.
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 18 Nov 2025
Posts: 21,712
Own Kudos:
26,995
 [2]
Given Kudos: 300
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 21,712
Kudos: 26,995
 [2]
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
miweekend
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x>y. Two packages weighing 3 pounds and 5 pounds, respectively can be mailed seperately or combined as one package. Which method is cheaper and how much money is saved?

A. Combined, with a saving of x-y cents
B. Combined, with a saving of y-x cents
C. Combined, with a saving of x cents
D. Separately, with a saving of x-y cents
E. Separately, with a saving of y cents


We can solve this problem by first creating expressions for the given information. We know that the rate is x cents for the first pound and y cents for each pound after the first. This can be written as:

x + y(t – 1), in which t is the number of pounds of the package. Let’s first determine the cost of mailing the two packages separately. We start with the 3-pound package:

x + y(3 – 1)

x + y(2)

x + 2y

Next we can determine the cost of mailing the 5-pound package:

x + y(5 – 1)

x + y(4)

x + 4y

Thus, the total cost of mailing the two individual packages separately is:

x + 2y + x + 4y = 2x + 6y

Now let's determine the cost of mailing the two packages if they are combined as one package. The combined package would weigh 8 pounds, and its shipping cost would be:

x + y(8 – 1)

x + y(7)

x + 7y

We are given that x > y, and so we see that mailing the packages individually is more costly than mailing them as one combined package. We now need to determine the difference in cost between the two mailing options:

2x + 6y – (x + 7y)

2x + 6y – x – 7y

x – y

Thus, the savings is (x – y) cents when the packages are shipped as one combined package.

Answer: A
User avatar
EMPOWERgmatRichC
User avatar
Major Poster
Joined: 19 Dec 2014
Last visit: 31 Dec 2023
Posts: 21,784
Own Kudos:
12,806
 [2]
Given Kudos: 450
Status:GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Expert
Expert reply
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
Posts: 21,784
Kudos: 12,806
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Hi All,

This question can be solved in a couple of different ways, but it's perfect for TESTing VALUES.

We're told that X > Y so let's use:

X = 3 cents for the first pound
Y = 2 cents for each additional pound

With these numbers….
A 3-pound package would cost 3 + 2(2) = 7 cents
A 5-pound package would cost 3 + 4(2) = 11 cents

An 8-pound package would cost 3 + 7(2) = 17 cents

So mailing them separately costs 18 cents total, while mailing them combined costs 17 cents total.

We're asked which option would be cheaper and by how much. We know that mailing the packages combined is cheaper, so we just need to plug in X = 3 and Y = 2 into the first 3 answers and confirm that only one of them gives us an answer of 1 cent...

Final Answer:

GMAT assassins aren't born, they're made,
Rich
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,341
 [3]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,341
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
Walkabout
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y.
Cost of 3-pound package
We pay x cents for the first pound, and then y cents for each of the 2 additional pounds.
Total cost = x + y + y = x + 2y

Cost of 5-pound package
We pay x cents for the first pound, and then y cents for each of the 4 additional pounds.
Total cost = x + y + y + y + y = x + 4y

TOTAL cost = (x + 2y) + (x + 4y) = 2x + 6y
-------------------------

Now let's see what happens when we COMBINE the two packages into an 8-pound package
Cost of 8-pound package
We pay x cents for the first pound, and then y cents for each of the 2 additional pounds.
Total cost = x + y + y + y + y + y + y + y = x + 7y
-------------------------

Which method is cheaper, and how much money is saved?
We must determine which value is less: 2x + 6y or x + 7y
We're told that x > y. So let's use this information.

Take: 2x + 6y and rewrite it as (x + 6y) + x
Take: x + 7y and rewrite it as (x + 6y) + y
Both quantities have (x + 6y) in common. So those values are equal.
Since x > y, we know that (x + 6y) + y is less than (x + 6y) + x
In other words, x + 7y is less than 2x + 6y
In other words, the packages COMBINED are cheaper.

Determine the savings, we'll subtract the cheaper cost from the more expensive cost.
In other words: savings = (2x + 6y) - (x + 7y) = x - y (cents)

Answer: A

Cheers,
Brent
User avatar
bagad.07
Joined: 22 Aug 2023
Last visit: 03 Jun 2025
Posts: 5
Own Kudos:
Given Kudos: 111
Location: India
Concentration: Real Estate, General Management
GPA: 3.49
WE:Asset Management (Real Estate)
Posts: 5
Kudos: 7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
OG Question code: PS16830
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,242
Kudos
Add Kudos
Bookmarks
Bookmark this Post
bagad.07
OG Question code: PS16830

________________________________
Thank you! Added to the first post.
User avatar
nguyenpham1309
Joined: 12 Feb 2023
Last visit: 24 May 2025
Posts: 18
Own Kudos:
Given Kudos: 65
Location: Viet Nam
GMAT Focus 1: 645 Q85 V84 DI77
GPA: 3.2
GMAT Focus 1: 645 Q85 V84 DI77
Posts: 18
Kudos: 10
Kudos
Add Kudos
Bookmarks
Bookmark this Post
When they say x (for the 1st pound) > y (for each additional pound), they have a reason to say so. As many times as I have to include "the cost of first pound" by choosing to separate the package, the cost will be higher than combining them as one package (with only 1 time of including the cost of the 1st pound)

-> Eliminate D, E with a strong belief that combining the package will be the cheaper solution (and I feel happy that this is a natural logic and I do not overthink a weird situation when separating is cheaper than combining the package)

To find how much money we can save, either recognize the difference in the two methods, or plug in any numbers; whatever works well with us.
User avatar
jparedes12
Joined: 05 May 2025
Last visit: 19 Nov 2025
Posts: 4
Own Kudos:
Given Kudos: 17
Location: Colombia
Products:
Posts: 4
Kudos: 3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I did everything right up until the subtraction of the two shipping costs.

I subtracted 2x+6y from x+7y, so I erroneously chose answer B. Can you please explain why you knew we needed to subtract x+7y from 2x+6y and not the other way around?

Thank you.
Bunuel


Shipping separately costs \(1x+2y\) for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus \(1x+4y\) for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is \((x+2y)+(x+4y)=2x+6y\);

Shipping together in one 8-pound package costs \(1x+7y\) (x cents for the first pound and y cents for the additional 7 pounds);

Difference: \(Separately-Together=(2x+6y)-(x+7y)=x-y\) --> as given that \(x>y\) then this difference is positive, which makes shipping together cheaper by \(x-y\) cents.

Answer: A.

Hope it's clear.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,389
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,389
Kudos: 778,242
Kudos
Add Kudos
Bookmarks
Bookmark this Post
jparedes12
I did everything right up until the subtraction of the two shipping costs.

I subtracted 2x+6y from x+7y, so I erroneously chose answer B. Can you please explain why you knew we needed to subtract x+7y from 2x+6y and not the other way around?

Thank you.


Shipping separately costs (2x + 6y) = (x + x + 6y), and shipping together costs (x + 7y) = (x + y + 6y). Since we are told that x > y, (x + x + 6y) > (x + y + 6y). Thus, shipping together is cheaper, and the savings are (2x + 6y) – (x + 7y) = x – y.
Moderators:
Math Expert
105389 posts
Tuck School Moderator
805 posts