GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Feb 2019, 13:54

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### Free GMAT Prep Hour

February 20, 2019

February 20, 2019

08:00 PM EST

09:00 PM EST

Strategies and techniques for approaching featured GMAT topics. Wednesday, February 20th at 8 PM EST
• ### Online GMAT boot camp for FREE

February 21, 2019

February 21, 2019

10:00 PM PST

11:00 PM PST

Kick off your 2019 GMAT prep with a free 7-day boot camp that includes free online lessons, webinars, and a full GMAT course access. Limited for the first 99 registrants! Feb. 21st until the 27th.

# To mail a package, the rate is x cents for the first pound

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Manager
Joined: 02 Dec 2012
Posts: 174
To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

17 Dec 2012, 05:37
3
14
00:00

Difficulty:

35% (medium)

Question Stats:

76% (01:54) correct 24% (02:03) wrong based on 1647 sessions

### HideShow timer Statistics

To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents
##### Most Helpful Expert Reply
Math Expert
Joined: 02 Sep 2009
Posts: 52971
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

17 Dec 2012, 05:40
6
8
Walkabout wrote:
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

Shipping separately costs $$1x+2y$$ for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus $$1x+4y$$ for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is $$(x+2y)+(x+4y)=2x+6y$$;

Shipping together in one 8-pound package costs $$1x+7y$$ (x cents for the first pound and y cents for the additional 7 pounds);

Difference: $$Separately-Together=(2x+6y)-(x+7y)=x-y$$ --> as given that $$x>y$$ then this difference is positive, which makes shipping together cheaper by $$x-y$$ cents.

Answer: A.

Hope it's clear.
_________________
##### Most Helpful Community Reply
Manager
Joined: 12 Jan 2013
Posts: 56
Location: United States (NY)
GMAT 1: 780 Q51 V47
GPA: 3.89
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

13 Jan 2013, 22:54
4
1
The actual weight of the packages is irrelevant, so long as both weights are positive integers.

Even if the packages weighed 1234 pounds and 5678 pounds, you would still get $$x-y$$ as you are only saving on the first pound.

No need to do any algebra, nor to plug in any numbers.
_________________

Sergey Orshanskiy, Ph.D.
I tutor in NYC: http://www.wyzant.com/Tutors/NY/New-York/7948121/#ref=1RKFOZ

##### General Discussion
Manager
Joined: 05 Dec 2011
Posts: 76
Location: Canada
Concentration: Accounting, Finance
GMAT Date: 09-08-2012
GPA: 3
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

09 Jan 2013, 20:22
3
Walkabout wrote:
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

Back solve and plug in numbers:
x>y
x=4
y=3
A=3lbs, B=5lbs
A=4+3*2=10
B=4+3*4=16 Individually =$26 Together=4+7*3=25 Combined is cheaper and by looking at the answers you can get$1 x-y

Solved in 1min 45 secs so is approachable this way and may seem easier than algebraically, cheers.

Answer:A
_________________

Thanks = +1 Kudos

Study from reliable sources!!

Thursdays with Ron: http://www.manhattangmat.com/thursdays-with-ron.cfm

Gmat Prep Questions:
CR http://gmatclub.com/forum/gmatprepsc-105446.html
SC http://gmatclub.com/forum/gmatprepsc-105446.html

Manager
Joined: 25 Jul 2012
Posts: 67
Location: United States
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

11 Mar 2013, 17:06
1
For me, picking numbers helped the most and talking myself through this question.

x cents for the first pound and y cents for each additional pound

The rule is x>y

(obviously because usually when someone tries to give you a deal they say "buy this thing and get the 2nd thing for a cheaper amount!")

Pick some easy numbers:
x=10 cents
y=5 cents

Given: two packages that are 3 pounds and 5 pounds
Question: What method (combined or separately) is cheaper and how much is saved?

Sending out separate packages:

3 pound package:
1(first cent per pound x) + 2(additional cents per pound y)
1(10)+2(5) = 20

5 pound package:
1(first cent per pound x)+4(additional cents per pound y)
1(10)+4(5) = 30

30+20 = 50

Sending the two packages combined:

Two packages are: 3 pounds + 5 pounds = 8 pounds

8 pound package:
1(first cent per pound x)+7(additional cents per pound y)
1(10) + 7(5) = 45

What's cheaper and by how much?

We realize that the combined (45) is cheaper than the separate(50) package.

It's cheaper by 5 cents or x-y

Answer is A.
_________________

If my post has contributed to your learning or teaching in any way, feel free to hit the kudos button ^_^

Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8883
Location: Pune, India
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

11 Mar 2013, 19:52
6
2
DelSingh wrote:
For me, picking numbers helped the most and talking myself through this question.

x cents for the first pound and y cents for each additional pound

The rule is x>y

(obviously because usually when someone tries to give you a deal they say "buy this thing and get the 2nd thing for a cheaper amount!")

Pick some easy numbers:
x=10 cents
y=5 cents

Given: two packages that are 3 pounds and 5 pounds
Question: What method (combined or separately) is cheaper and how much is saved?

Sending out separate packages:

3 pound package:
1(first cent per pound x) + 2(additional cents per pound y)
1(10)+2(5) = 20

5 pound package:
1(first cent per pound x)+4(additional cents per pound y)
1(10)+4(5) = 30

30+20 = 50

Sending the two packages combined:

Two packages are: 3 pounds + 5 pounds = 8 pounds

8 pound package:
1(first cent per pound x)+7(additional cents per pound y)
1(10) + 7(5) = 45

What's cheaper and by how much?

We realize that the combined (45) is cheaper than the separate(50) package.

It's cheaper by 5 cents or x-y

Answer is A.

Number plugging is a great technique. Though, it will be good if you understand the logic too. You could save yourself some time and energy.

Cost of first pound - x cents
Cost of every additional pound - y cents
x > y
So first pound is costlier than every subsequent pound.
Two packets - 3 pounds, 5 pounds

If I have 8 pounds, I should send them together so that there is only one expensive 'first pound'. If I send them separately, I will have two expensive 'first pounds'.
After putting 3 pounds in the packet, if I continue to put the 4th pound in the same packet, I save money on it because it is not the expensive 'first pound' which costs x cents but rather the fourth pound which costs only y cents. The rest of the 4 pounds go as the same y cents rate whether they are sent separately or together.
So the only saving when I send them together is x - y on the fourth pound of the combined packet.
Answer (A)
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Manager
Joined: 12 Jan 2013
Posts: 148
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

10 Jan 2014, 01:38
Bunuel wrote:
Walkabout wrote:
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

Shipping separately costs $$1x+2y$$ for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus $$1x+4y$$ for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is $$(x+2y)+(x+4y)=2x+6y$$;

Shipping together in one 8-pound package costs $$1x+7y$$ (x cents for the first pound and y cents for the additional 7 pounds);

Difference: $$Separately-Together=(2x+6y)-(x+7y)=x-y$$ --> as given that $$x>y$$ then this difference is positive, which makes shipping together cheaper by $$x-y$$ cents.

Answer: A.

Hope it's clear.

I came to this conclusion: $$(2x+6y) = (x+7y)$$, but obviously nothing tells us that posting in one 8 pound package is EQUAL to posting separately, actually the question even implies there's a difference.. But anyways, my calculations with the above in mind ended up in: $$(x+7y) - (2x+6y) = y - x$$, so I went with B

My question is: For questions like these, what is it that makes you "know" that the difference we are supposed to calculate is Separately - Together? That subtraction is not very immediately intuitive to me, why would we for instance not go the other way: Together - Separately?

Thank you
Math Expert
Joined: 02 Sep 2009
Posts: 52971
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

10 Jan 2014, 02:19
aeglorre wrote:
Bunuel wrote:
Walkabout wrote:
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

Shipping separately costs $$1x+2y$$ for the 3 pounds package (x cents for the first pound and y cents for the additional 2 pounds) plus $$1x+4y$$ for the 5 pounds package (x cents for the first pound and y cents for the additional 4 pounds), so total cost of shipping separately is $$(x+2y)+(x+4y)=2x+6y$$;

Shipping together in one 8-pound package costs $$1x+7y$$ (x cents for the first pound and y cents for the additional 7 pounds);

Difference: $$Separately-Together=(2x+6y)-(x+7y)=x-y$$ --> as given that $$x>y$$ then this difference is positive, which makes shipping together cheaper by $$x-y$$ cents.

Answer: A.

Hope it's clear.

I came to this conclusion: $$(2x+6y) = (x+7y)$$, but obviously nothing tells us that posting in one 8 pound package is EQUAL to posting separately, actually the question even implies there's a difference.. But anyways, my calculations with the above in mind ended up in: $$(x+7y) - (2x+6y) = y - x$$, so I went with B

My question is: For questions like these, what is it that makes you "know" that the difference we are supposed to calculate is Separately - Together? That subtraction is not very immediately intuitive to me, why would we for instance not go the other way: Together - Separately?

Thank you

Please read the red part in the solution you are quoting.

Hope it helps.
_________________
Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 8883
Location: Pune, India
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

12 Jan 2014, 19:57
aeglorre wrote:

I came to this conclusion: $$(2x+6y) = (x+7y)$$, but obviously nothing tells us that posting in one 8 pound package is EQUAL to posting separately, actually the question even implies there's a difference.. But anyways, my calculations with the above in mind ended up in: $$(x+7y) - (2x+6y) = y - x$$, so I went with B

My question is: For questions like these, what is it that makes you "know" that the difference we are supposed to calculate is Separately - Together? That subtraction is not very immediately intuitive to me, why would we for instance not go the other way: Together - Separately?

Thank you

I would like to further point out here that since you are given that x > y, when you get the answer as y - x, you should realize that this will be negative. But money saved must be positive so Separately must be higher than Together and you are required to find Separately - Together.
Also, Separately = 2x + 6y
Together = x + 7y
Separately has an x instead of a y and since x is higher, Separately is higher than Together.
_________________

Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >

Senior Manager
Joined: 10 Mar 2013
Posts: 498
Location: Germany
Concentration: Finance, Entrepreneurship
GMAT 1: 580 Q46 V24
GPA: 3.88
WE: Information Technology (Consulting)
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

30 May 2015, 05:00
1
Together: x + 7y
Separately: x + 2y + y + 4y = 2x + 6y
to send the package together will be cheaper because x>y (If Separately we have one x more and one y less, but we know that x>y)
--> 2x+6y - x -7y = x-y (A)
_________________

When you’re up, your friends know who you are. When you’re down, you know who your friends are.

Share some Kudos, if my posts help you. Thank you !

800Score ONLY QUANT CAT1 51, CAT2 50, CAT3 50
GMAT PREP 670
MGMAT CAT 630
KAPLAN CAT 660

Target Test Prep Representative
Status: Head GMAT Instructor
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2827
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

16 Jun 2016, 05:09
Walkabout wrote:
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

We can solve this problem by first creating expressions for the given information. We know that the rate is x cents for the first pound and y cents for each pound after the first. This can be written as:

x + y(t – 1), where t is the number of pounds of the package. Let’s first determine the cost of mailing the two individual packages separately. We start with the 3-pound package:

x + y(3 – 1)

x + y(2)

x + 2y

Next we can determine the cost of mailing the 5-pound package:

x + y(5 – 1)

x + y(4)

x + 4y

Thus, the total cost for the two individual packages (if they are mailed separately) is:

x + 2y + x + 4y = 2x + 6y

Now let's determine the cost of the two packages if they are combined as one package. The combined package would weigh 8 pounds, and its shipping cost would be:

x + y(8 – 1)

x + y(7)

x + 7y

We are given that x > y, and so we see that mailing the packages individually is more costly than mailing them as one combined package. We now need to determine the difference in cost between the two mailing options:

2x + 6y – (x + 7y)

2x + 6y – x – 7y

x – y

Thus, the savings is (x – y) cents when the packages are shipped as one combined package.

Answer A
_________________

Jeffery Miller
Head of GMAT Instruction

GMAT Quant Self-Study Course
500+ lessons 3000+ practice problems 800+ HD solutions

VP
Joined: 09 Mar 2016
Posts: 1285
Re: To mail a package, the rate is x cents for the first pound  [#permalink]

### Show Tags

14 Apr 2018, 03:00
Walkabout wrote:
To mail a package, the rate is x cents for the first pound and y cents for each additional pound, where x > y. Two packages weighing 3 pounds and 5 pounds, respectively, can be mailed separately or combined as one package. Which method is cheaper, and how much money is saved?

(A) Combined, with a savings of x - y cents
(B) Combined, with a savings of y - x cents
(C) Combined, with a savings of x cents
(D) Separately, with a savings of x - y cents
(E) Separately, with a savings of y cents

Can someone give me an example in which C would be correct answer and not A ? just confused choosing between A and C
Re: To mail a package, the rate is x cents for the first pound   [#permalink] 14 Apr 2018, 03:00
Display posts from previous: Sort by

# To mail a package, the rate is x cents for the first pound

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.