Last visit was: 18 Nov 2025, 22:07 It is currently 18 Nov 2025, 22:07
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
avatar
tealeaflin
Joined: 08 Aug 2006
Last visit: 15 Oct 2006
Posts: 4
Own Kudos:
680
 [680]
Posts: 4
Kudos: 680
 [680]
32
Kudos
Add Kudos
647
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Wayxi
Joined: 13 Oct 2009
Last visit: 20 Apr 2014
Posts: 28
Own Kudos:
562
 [425]
Given Kudos: 2
Location: New York, NY
Schools:Columbia, Johnson, Tuck, Stern
Posts: 28
Kudos: 562
 [425]
309
Kudos
Add Kudos
114
Bookmarks
Bookmark this Post
User avatar
dwivedys
Joined: 15 Jul 2004
Last visit: 02 Sep 2018
Posts: 597
Own Kudos:
750
 [195]
Given Kudos: 17
Concentration: Strategy
Schools:Wharton (R2 - submitted); HBS (R2 - submitted); IIMA (admitted for 1 year PGPX)
Posts: 597
Kudos: 750
 [195]
168
Kudos
Add Kudos
26
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,102
 [191]
77
Kudos
Add Kudos
112
Bookmarks
Bookmark this Post
Tanya prepared 4 different letters to 4 different addresses. For each letter, she prepared one envelope with its correct address. If the 4 letters are to be put into the four envelopes at random, what is the probability that only one letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8


Total # of ways of assigning 4 letters to 4 envelopes is \(4!=24\).

Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct).

ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

\(P(C=1)=\frac{8}{24}=\frac{1}{3}\)

Answer: D.

All other possible scenarios: https://gmatclub.com/forum/letter-arrang ... 84912.html

Hope it's clear.
avatar
ank
Joined: 19 Aug 2009
Last visit: 08 Oct 2009
Posts: 2
Own Kudos:
91
 [91]
Given Kudos: 22
Posts: 2
Kudos: 91
 [91]
69
Kudos
Add Kudos
21
Bookmarks
Bookmark this Post
For the Tanya question... Ans is 1/3

Lets take 4 letters L1 L2 L3 L4 and 4 envelopes E1 E2 E3 E4 ... L1 should go into E1 and so on...

The Question asks us to find the prob of only one letter going into the correct envelope, which means the other 3 go into wrong envelopes.

Initially, Lets find the Total no of ways of arranging 4 letters in 4 diff envelopes which is 4! = 24

so, L1 to go into E1(correct envelope)...Thus..... 1 choice
L2 can go into E3 or E4(wrong envelopes)........ 2 choices
L3 can go into only E2 or E4(wrong envelopes)...2 choices
L4 can go only to E2 or E3(wrong envelopes).....2 choices

Thus probability that only 1 letter will be put into the envelope with its correct address= 1*2*2*2/4!=8/24 => 1/3
User avatar
GMATGuruNY
Joined: 04 Aug 2010
Last visit: 18 Nov 2025
Posts: 1,344
Own Kudos:
3,795
 [41]
Given Kudos: 9
Schools:Dartmouth College
Expert
Expert reply
Posts: 1,344
Kudos: 3,795
 [41]
26
Kudos
Add Kudos
15
Bookmarks
Bookmark this Post
dk94588
Hello, this was on GMATprep, and I have had problems with this type of question before, but maybe you could help me solve it.

Tanya prepared 4 different letters to 4 different addresses. For each letter, she prepared one envelope with its correct address. If the 4 letters are to be put into the four envelopes at random, what is the probability that only one letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8

Let's call the envelopes E1, E2, E3 and E4.

P(only E1 gets the correct letter):

P(E1 gets the correct letter) = 1/4 (4 letters total, 1 of them correct)
P(E2 gets the wrong letter) = 2/3 (3 letters left, 2 of them wrong)
P(E3 gets the wrong letter) = 1/2 (2 letters left, 1 of them wrong)
P(E4 gets the wrong letter) = 1/1 (1 letter left, and it must be wrong since we placed the correct letter in either E2 or E3)

Since we need all of these events to happen, we multiply the fractions:

1/4 * 2/3 * 1/2 * 1/1 = 1/12.

Since each envelope has the same probability of getting the correct letter and we have 4 envelopes total, we need to multiply by 4:

4 * 1/12 = 1/3.

The correct answer is .
User avatar
gmat1011
Joined: 11 Jul 2010
Last visit: 22 Dec 2012
Posts: 139
Own Kudos:
256
 [21]
Given Kudos: 20
Posts: 139
Kudos: 256
 [21]
13
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
1/3

Only 1 letter finds the correct envelope --- that can happen in 4 cases when each of the 4 letters fills into the correct envelope

So, 1st envelope: can be filled in 4 ways (i.e., 4 possible correct letters)

The other 3 go astray:

2nd envelope: can be filled in 2 ways (2 wrong letters)
3rd envelope: can be filled in 1 way (1 wrong letter)
4th and final envelope: can be filled in 1 way (1 wrong letter)

So number of desired events = 4*2*1*1 = 8

Total ways to place 4 letters in 4 envelopes = 4*3*2*1 = 24

Prob = Desired / Total = 8/24 = 1/3
General Discussion
User avatar
Hermione
Joined: 23 May 2005
Last visit: 16 Dec 2006
Posts: 139
Own Kudos:
260
 [4]
Location: Sing/ HK
Posts: 139
Kudos: 260
 [4]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sorrry guys... :( still not getting thru my brain... any other (possibly more basic/ step by step) explanation?
User avatar
GODSPEED
Joined: 24 Sep 2008
Last visit: 06 Aug 2012
Posts: 126
Own Kudos:
1,215
 [4]
Given Kudos: 7
Schools:MIT / INSEAD / IIM - ABC
GPA: 3.6
Posts: 126
Kudos: 1,215
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
ank
For the Tanya question... Ans is 1/3

Lets take 4 letters L1 L2 L3 L4 and 4 envelopes E1 E2 E3 E4 ... L1 should go into E1 and so on...

The Question asks us to find the prob of only one letter going into the correct envelope, which means the other 3 go into wrong envelopes.

Initially, Lets find the Total no of ways of arranging 4 letters in 4 diff envelopes which is 4! = 24

so, L1 to go into E1(correct envelope)...Thus..... 1 choice
L2 can go into E3 or E4(wrong envelopes)........ 2 choices
L3 can go into only E2 or E4(wrong envelopes)...2 choices
L4 can go only to E2 or E3(wrong envelopes).....2 choices

Thus probability that only 1 letter will be put into the envelope with its correct address= 1*2*2*2/4!=8/24 => 1/3

OA is 1/3....

I took little diff approach....please explain wht's wrong with it???

Probab of 1 letter to correct add ENV = 4C1 / 4! = 1/6, while answer is just double of this WHY???
User avatar
IanStewart
User avatar
GMAT Tutor
Joined: 24 Jun 2008
Last visit: 18 Nov 2025
Posts: 4,145
Own Kudos:
10,985
 [11]
Given Kudos: 99
Expert
Expert reply
Posts: 4,145
Kudos: 10,985
 [11]
6
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
GODSPEED

OA is 1/3....

I took little diff approach....please explain wht's wrong with it???

Probab of 1 letter to correct add ENV = 4C1 / 4! = 1/6, while answer is just double of this WHY???

The number of ways to put exactly one letter in the right envelope is not equal to 4C1. There are 4C1 ways to choose which letter goes in the right envelope, but you then need to work out how many ways the remaining letters can be placed in the wrong envelope. For the first of these three letters, there are 2 wrong envelopes you could choose. Now, you still have one letter left which has its matching envelope unused; you must put this letter in the wrong envelope, so you have only 1 choice for this letter, and finally for the last letter you have only 1 choice for where to put it. So you have 2*1*1 = 2 ways to assign the remaining letters incorrectly, which is why you need to multiply your answer by 2.

I posted a slightly different solution to BTG a while ago, which I'll paste here:

One letter goes in the right envelope. It doesn't matter which envelope this is- there are three envelopes left. 2/3 chance the next letter goes in the wrong envelope, 1/2 the next one does, and 100% the last one does- its envelope must have been used already.

(2/3)(1/2) = 1/3.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
778,102
 [4]
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,102
 [4]
2
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
You can also check the topic below, with almost all possible scenarios for this problem:

letter-arrangements-understanding-probability-and-combinats-84912.html?highlight=Tanya
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,266
Own Kudos:
76,983
 [14]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,266
Kudos: 76,983
 [14]
9
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
SwapnilRanadive
Hi,

Can someone pls let me know what is the correct answer for below given problem?

4 different letters to be sent to 4 addresses. For each letter we have only one envelop with correct address. 4 letters are to be
put in 4 envelops randomly. What is the probability that only one letter will be put into envelop with correct address?
A) 1/24 B) 1/8 C) 1/4 D) 1/3 E) 3/8

Think of it this way:

There are 4 letters, R, G, B and Y and 4 envelopes, R, G, B and Y
Letter R should go in envelope R, letter G in envelope G etc
But if we are putting letters in randomly, we can arrange 4 letters in 4 envelopes in 4! = 24 ways (using basic counting principle)

Now let us select 1 correct combination out of the 4 in 4C1 = 4 ways
e.g. letter B is put in envelope B.

Now we have 3 letters and 3 corresponding envelopes. They must all go in incorrectly. In how many ways can this be done?
We can put in a letter incorrectly in envelope R in 2 ways (we can put in letter G or Y) e.g. we put letter G in envelope R. Now we have letters R and Y remaining.

Now, there is only 1 way of putting letters in G and Y. Envelope Y should not have letter Y so it must have letter R and envelope G must have the remaining letter Y.

Total ways of arranging such that only one letter goes in correctly = 4*2*1 = 8 ways

Probability of putting in only 1 letter correctly = 8/24 = 1/3
User avatar
anandxrfeu
Joined: 07 May 2011
Last visit: 13 Jan 2012
Posts: 7
Own Kudos:
18
 [4]
Given Kudos: 1
Posts: 7
Kudos: 18
 [4]
3
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Here is my take:

We have 4 different ways to get exactly one correct match.

Therefore 4xP(exactly one match)

4x(probability of getting 1st right)X(probability of getting 2nd wrong)X(probability of getting 3rd wrong)X(probability of getting 4th wrong)

Probability of getting 1st right= 1/4 Imagine we have picked a letter and need to pick its corresponding envelope. There is only one correct envelope out of 4 possible options.

Probability of getting 2nd wrong= 2/3 Now we pick the 2nd letter and are looking to get the wrong envelope. Out of the 3 total envelopes present 2 are wrong and one is its match.

Probability of getting 3rd wrong= 1/2 same logic as previous step. 2 envelopes remains out of which one is wrong the wrong one and we need to pick that.

Probability of getting 4th wrong=1 we don’t have any option now as we have already picked the remaining 3 envelopes.
Therefore:

Probability that only one letter will be put into envelop with correct address=
4x(1/4)x(2/3)x(1/2)x(1/1) = 1/3
avatar
raghupara
Joined: 16 Oct 2011
Last visit: 01 May 2014
Posts: 45
Own Kudos:
Given Kudos: 5
Location: United States
Products:
Posts: 45
Kudos: 29
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Yes, the total # of possible placements for the three letters is 3! = 6 in general, but in this case when we deal with the probability of these letters not being mapped to the right address, we have to take out the right one and so it becomes 2! = 2/letter.
Also, I did not have to compute the same again for other letters, meaning, P(A alone mapped to the right address, but the rest not) = P(B alone mapped to right address while others are not)........ = 2*2*2/4! = 1/3?
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
2,325
 [6]
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,325
 [6]
4
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
raghupara
Yes, the total # of possible placements for the three letters is 3! = 6 in general, but in this case when we deal with the probability of these letters not being mapped to the right address, we have to take out the right one and so it becomes 2! = 2/letter.
Also, I did not have to compute the same again for other letters, meaning, P(A alone mapped to the right address, but the rest not) = P(B alone mapped to right address while others are not)........ = 2*2*2/4! = 1/3?

(1) Using combinatorics:
To place one letter correctly (say A) - 1 possibility
The second letter to misplace it - 2 possibilities
The third letter to misplace it - 1 possibility
The fourth letter will be surely misplaced - just 1 possibility left
Consider the above scenario 4 times - 4 different possibilities for the correctly placed letter (A, B, C, or D can be placed correctly)
Therefore, the probability for exactly one letter placed correctly is 4 * 2 * 1 * 1/4! = 8/24 = 1/3

(2) Using probabilities:
To place one letter correctly (say A) - 1/4
The second letter to misplace it - 2/3
The third letter to misplace it - 1/2
The fourth letter will be surely misplaced - 1/1
So, the probability of a certain letter to be placed correctly and all the others to be misplaced is
(1/4)*(2/3)*(1/2) *(1/1) = 1/12
Again, consider the above scenario 4 times - it gives 4*(1/12) = 1/3

In your answer there are no probabilities (probabilities are expressed as fractions, between 0 and 1 inclusive).
Using the fundamental formula for probabilities (the number of desired outcomes / the total number of possible outcomes) again, your explanation isn't correct.
1*2*2*2 doesn't match any suitable scenario for placing exactly one later correctly and misplace all the other three.
Pay attention to getting the correct answer by using the correct reasoning.
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
2,325
 [1]
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,325
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
In a previous thread, IanStewart posted a solution to this question:
(tanya-prepared-4-different-letters-to-4-different-addresses-83683.html)

"One letter goes in the right envelope. It doesn't matter which envelope this is- there are three envelopes left. 2/3 chance the next letter goes in the wrong envelope, 1/2 the next one does, and 100% the last one does- its envelope must have been used already.

(2/3)(1/2) = 1/3. "

I would like to point out that, although the final result is correct (1/3), the explanation is not correct.
"One letter goes in the right envelope. It doesn't matter which envelope this is- there are three envelopes left." This assumption is nowhere reflected in the chain of computations.
In the above computations, 2/3 is what is called a conditional probability, meaning that under the assumption that a certain letter is placed correctly, then the probability of placing one of the remaining 3 letters incorrectly is 2/3, then the probability of placing one of the remaining two letters incorrectly after two were already placed, one correctly and one incorrectly, etc.

The correct chain should be: 1/4 for the probability of a certain letter to be placed correctly, 2/3 for one of the remaining three placed incorrectly, 1/2 for one of the remaining two to be misplaced, and 1/1 for the last one which will be surely misplaced. This gives (1/4)*(2/3)*(1/2)*(1/1)=1/12 for the probability of exactly one particular letter to be placed correctly.
Since there are four possibilities to chose the one letter placed correctly, the required probability is 4*(1/12) = 1/3.

There is a collection of questions with all the possible scenarios for placing the 4 letters:
letter-arrangements-understanding-probability-and-combinats-84912.html?hilit=letters%20envelopes

Can we use a similar reasoning used by IanStewart (for exactly 1 correctly placed letter) to find the probability of placing exactly 2 letters correctly?
The reasoning would go like this: consider two letters placed correctly, doesn't matter which ones, then the probability of placing one of the remaining letters incorrectly is 1/2, and then the fourth letter incorrectly is 1/1. Can we conclude that 1/2 is the probability of placing exactly two letters correctly?
The correct answer is 1/4. So, what's wrong with this reasoning?

I claim, we have to take into account the probability of placing a given pair of letters correctly. This probability is 1/12, since the probability of one of the letters to be placed correctly is 1/4, then the other one to be placed correctly is 1/3, which gives the (1/4)*(1/3) = 1/12 (or, either only the two letters are placed correctly or all four are, which means a probability of 2/24 = 1/12).
Then, the probability of one of the remaining two letters to be misplaced is 1/2, and the last one is for sure going to be misplaced (probability 1/1).
Since there are 4C2=(4*3)/2 = 6 possibilities to chose a pair of letters from the given 4 letters, the probability of placing exactly any two letters correctly is given by (1/12) * (1/2) * 6 = 1/4, which is the correct answer.

My point is: all the assumptions should be reflected in the computations, and first of all, we should make all the necessary and correct assumptions, regardless whether we are dealing directly with probabilities or counting number of possibilities. Easier said than done...but we have to try :O)
User avatar
EvaJager
Joined: 22 Mar 2011
Last visit: 31 Aug 2016
Posts: 514
Own Kudos:
Given Kudos: 43
WE:Science (Education)
Posts: 514
Kudos: 2,325
Kudos
Add Kudos
Bookmarks
Bookmark this Post
clearmountain
Max prepared 4 different letters to be sent to 4 different addresses. for each letter she prepared an envelope with its correct address. if the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address? answer is 1/3 but very confused.

4 is not a big number, so you can deal with the computations directly.

The total number of possibilities to place the 4 letters in 4 envelopes is 4!.

Any one of the 4 letters can be placed correctly, so 4 possibilities.
After 1 letter is placed in its correct envelope, think of how many ways are there to place the remaining 3 letters such that neither one is in its correct envelope.
3! is the number of possibilities to arrange the three letters, say A,B,C in their envelopes.
Out of these, one possibility when each letter is in its correct envelope - 1
Then, there are 3 more possibilities when one letter is correctly placed and the other two are switched between them - 3
Therefore, a total of 3! - 4 possibilities to have exactly one letter placed correctly.

Required probability is 4(3! - 4)/4! = 4*2/(2*3*4) = 1/3.
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel
robertrdzak
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8

D) 1/3

Could someone please explain a good way to go about solving this please?

Total # of ways of choosing envelopes=4!=24.
Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct)
ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

P(C=1)=8/24=1/3

To check all other possible scenarios check: letter-arrangements-understanding-probability-and-combinats-84912.html


Hi,

I do not get why we are multiplying by 4? Is it because we have to repeat the process described above for each of A, B, C and D as we do not know which one will be the right one?
Thanks!
User avatar
navigator123
Joined: 17 May 2012
Last visit: 18 Aug 2014
Posts: 47
Own Kudos:
503
 [7]
Given Kudos: 61
Status:Trying.... & desperate for success.
Location: India
Concentration: Leadership, Entrepreneurship
Schools: NUS '15
GPA: 2.92
WE:Analyst (Computer Software)
Schools: NUS '15
Posts: 47
Kudos: 503
 [7]
5
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
alex1233
Bunuel
robertrdzak
Tanya prepared 4 different letters to be sent to 4 different addresses. For each letter, she prepared an envelope with its correct address. If the 4 letters are to be put into the 4 envelopes at random, what is the probability that only 1 letter will be put into the envelope with its correct address?

A) 1/24
B) 1/8
C) 1/4
D) 1/3
E) 3/8

D) 1/3

Could someone please explain a good way to go about solving this please?

Total # of ways of choosing envelopes=4!=24.
Only one letter in the right envelope: 4(# of envelopes)*2(# of ways possible to arrange 3 letters incorrectly in the envelopes, when one is correct)
ABCD(envelopes)
ACDB(letters)
ADBC(letters)
(When A is in the right envelope other three have only 2 possible incorrect arrangements)
As we have 4 letters, total # of ways 4*2=8

P(C=1)=8/24=1/3

To check all other possible scenarios check: letter-arrangements-understanding-probability-and-combinats-84912.html


Hi,

I do not get why we are multiplying by 4? Is it because we have to repeat the process described above for each of A, B, C and D as we do not know which one will be the right one?
Thanks!

Hi,
probability of ONE letter being in correct envelope and rest of the other 3 being in in-correct envelope is [1/4] * [2/3 * 1/2 * 1] = 1/12

Say there are 4 letters ABCD, then per above scenario, we are just finding the probability of just one letter A. We have B,C & D as well.
So the probability of letters B,C&D to individually having a chance to put in correct envelope is,

4 * 1/12 = 1/3

Hence the answer
avatar
ARUNPLDb
Joined: 09 Jul 2012
Last visit: 14 Jan 2015
Posts: 6
Own Kudos:
24
 [7]
Given Kudos: 6
Posts: 6
Kudos: 24
 [7]
6
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
We are trying to find the probability of 1R3W.

Probability = number of ways to get 1R3W/number of ways total

number of ways total is 4! = 24. Imagine stuffing envelopes randomly. Stacy can put any of 4 letters into the first envelope, any of the remaining 3 into the next, either of the remaining 2 into the next, and has no choice to make on the last, or 4*3*2*1.

number of ways to get 1R3W : She could fill the first envelope with the right letter (1 way), then put either of the 2 wrong remaining letters in the next (2 ways), then put a wrong letter in the next (1 way). That's 1*2*1*1 = 2.

But since it doesn't have to be the first envelope that has the Right letter, it could be any of the 4 envelopes (i.e. we could have RWWW, WRWW, WWRW, WWWR), the total ways to get 1R3W is 4*2 = 8.

Probability is 8/24 = 1/3.
 1   2   3   
Moderators:
Math Expert
105355 posts
Tuck School Moderator
805 posts