Last visit was: 19 Nov 2025, 06:26 It is currently 19 Nov 2025, 06:26
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,341
 [16]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,341
 [16]
3
Kudos
Add Kudos
13
Bookmarks
Bookmark this Post
avatar
Sri21
Joined: 27 Oct 2016
Last visit: 10 Sep 2018
Posts: 8
Own Kudos:
9
 [1]
Given Kudos: 54
Posts: 8
Kudos: 9
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,341
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
chetan2u
User avatar
GMAT Expert
Joined: 02 Aug 2009
Last visit: 15 Nov 2025
Posts: 11,238
Own Kudos:
43,702
 [2]
Given Kudos: 335
Status:Math and DI Expert
Location: India
Concentration: Human Resources, General Management
GMAT Focus 1: 735 Q90 V89 DI81
Products:
Expert
Expert reply
GMAT Focus 1: 735 Q90 V89 DI81
Posts: 11,238
Kudos: 43,702
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
GMATPrepNow
w, x, y and z are positive integers such that y < z < x < w. When w is divided by x, the quotient is y, and the remainder is z. What is the value of z?

(1) The least common multiple of w and x is 30
(2) x³ – 8x² + 12x = 0


y<z<X<w....
1) LCM of w and X is 30..
W and X can take many values and so can z..
Insufficient
2) \(x^3-8x^2+12x=0.........x(x-6)(x-2)=0\)
So X can be 0,6 or 2
Since y<z<x<w and all are positive integers, X has to be 3 at least..
So X is 6..
Now values fitting can be 1<2<6<8 or 1<3<6<9..
So z can be anything from 2 to 5
Insufficient

Combined..
w can be 10,15 or 30..
10/6 gives y as 1 and z as 4..
15/6 gives y as 2 and z as 3..
30/6 not possible..
So z can be 3 or 4..
Insufficient..

GMATPrepNow pl check..
I am sure you wanted to ask value of X..
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,341
Kudos
Add Kudos
Bookmarks
Bookmark this Post
chetan2u
GMATPrepNow
w, x, y and z are positive integers such that y < z < x < w. When w is divided by x, the quotient is y, and the remainder is z. What is the value of z?

(1) The least common multiple of w and x is 30
(2) x³ – 8x² + 12x = 0


y<z<X<w....
1) LCM of w and X is 30..
W and X can take many values and so can z..
Insufficient
2) \(x^3-8x^2+12x=0.........x(x-6)(x-2)=0\)
So X can be 0,6 or 2
Since y<z<x<w and all are positive integers, X has to be 3 at least..
So X is 6..
Now values fitting can be 1<2<6<8 or 1<3<6<9..
So z can be anything from 2 to 5
Insufficient

Combined..
w can be 10,15 or 30..
10/6 gives y as 1 and z as 4..
15/6 gives y as 2 and z as 3..
30/6 not possible..
So z can be 3 or 4..
Insufficient..

GMATPrepNow pl check..
I am sure you wanted to ask value of X..

You're absolutely right!
Sorry, I edited the question while you were composing your response.

Cheers,
Brent
avatar
Tuanguyen248
Joined: 10 Jun 2018
Last visit: 09 Aug 2022
Posts: 11
Own Kudos:
10
 [1]
Given Kudos: 1
Posts: 11
Kudos: 10
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
we got the formula: w=xy+z (w>x>z>y)

From (1) (w,x) = {1,2,3,5,6,10,15}

if w=15 => x= {6,10} => y= {1,2} & z = {3,5}
if w=10 => x = 6 => y= 1 & z= 4
=> insufficient
From (2) => x = {0,2,6} => x= 6.
=> cannot find z => insufficient.

(1)+(2) we still got problem from (1) => Answer is E i think..
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,341
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Tuanguyen248
we got the formula: w=xy+z (w>x>z>y)

From (1) (w,x) = {1,2,3,5,6,10,15}

if w=15 => x= {6,10} => y= {1,2} & z = {3,5}
if w=10 => x = 6 => y= 1 & z= 4
=> insufficient
From (2) => x = {0,2,6} => x= 6.
=> cannot find z => insufficient.

(1)+(2) we still got problem from (1) => Answer is E i think..

A thousand apologies.
I meant for the target question to ask "What is the value of x" (not z)
avatar
shawnxnee
Joined: 24 Dec 2017
Last visit: 26 Nov 2021
Posts: 3
Own Kudos:
12
 [3]
Given Kudos: 7
Posts: 3
Kudos: 12
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
GMATPrepNow
w, x, y and z are positive integers such that y < z < x < w. When w is divided by x, the quotient is y, and the remainder is z. What is the value of x?

(1) The least common multiple of w and x is 30
(2) x³ – 8x² + 12x = 0


(1)
Factors of 30:
1,2,3,5,6,10,15,30
x could be 10 and w could be 15, or x could be 6 and w could be 10. Multiple values of x allowed so INSUFFICIENT

(2)
\(x^{3}\) – \(8x^{2}\) + 12x = 0
x(\(x^{2}\) – 8x + 12) = 0
x(x-6)(x-2) = 0

In the question stem, it says that all numbers are positive, so it rules out that x = 0
Additionally, question stem also specifies that x must have at least 2 positive numbers that are less in value, so that rules out x = 2
Thus we have that x = 6 SUFFICIENT

B
User avatar
PKN
Joined: 01 Oct 2017
Last visit: 11 Oct 2025
Posts: 814
Own Kudos:
1,587
 [2]
Given Kudos: 41
Status:Learning stage
WE:Supply Chain Management (Energy)
Posts: 814
Kudos: 1,587
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
GMATPrepNow
w, x, y and z are positive integers such that y < z < x < w. When w is divided by x, the quotient is y, and the remainder is z. What is the value of x?

(1) The least common multiple of w and x is 30
(2) x³ – 8x² + 12x = 0

Given,
(i) w, x, y and z are positive integers ,
(ii) y < z < x < w and
(iii)w=xy+z

Question stem, x=?

st1, LCM(w,x)=30, we have more than one combination of (w,x) which yields more than one value of x.

Hence st1 is not sufficient.

st2, x³ – 8x² + 12x = 0

Here we have 3 roots of x, viz, 0,2 & 6.

As per the given constraints the value of x can't be 0(x is positive) and 2(x is the 3rd positive number in the sequence) .(from given data (i) & (ii))

Hence , x=6.

So, st2 is sufficient.

Ans .(B)

P.S:- Let's check the validity of given data(iii) in st2,

we have x=6, and we have to validate w=xy+z.

The possible combinations are:

y=1, z=2,x=6, w=8
y=2, z=3,x=6, w=15
y=3, z=4,x=6, w=22
y=4, z=5,x=6, w=29

So, all the given conditions met.
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
35,341
 [1]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,341
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
GMATPrepNow
w, x, y and z are positive integers such that y < z < x < w. When w is divided by x, the quotient is y, and the remainder is z. What is the value of x?

(1) The least common multiple of w and x is 30
(2) x³ – 8x² + 12x = 0

Target question: What is the value of x?

Given: w, x, y and z are positive integers such that y < z < x < w. When w is divided by x, the quotient is y, and the remainder is z.

Statement 1: The least common multiple of w and x is 30
There are several values of w and x that satisfy statement 1. Here are two:
Case a: w = 15 and x = 6. In this case, we get 15 divided by 6 equals 2 with remainder 3. In other words, w = 15, x = 6, y = 2 and z = 3. Here, the answer to the target question is x = 6
Case b: w = 15 and x = 10. In this case, we get 15 divided by 10 equals 1 with remainder 5. In other words, w = 15, x = 10, y = 1 and z = 5. Here, the answer to the target question is x = 10
Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT

Statement 2: x³ – 8x² + 12x = 0
Factor to get: x(x² - 8x + 12) = 0
Factor again to get: x(x - 2)(x - 6) = 0
So, there are 3 possible solutions: x = 0, x = 2 and x = 6
We're told that x is a POSITIVE INTEGER, so x cannot equal 0

There's also a problem with the solution x = 2.
We're told that 0 < y < z < x < w
So, we get: 0 < y < z < 2 < w
Since there are no integer values of y and z that can satisfy this inequality, x cannot equal 2

So, it must be the case that x = 6
Since we can answer the target question with certainty, statement 2 is SUFFICIENT

Answer: B

Cheers,
Brent
avatar
Paugustin90
Joined: 16 Mar 2018
Last visit: 17 Mar 2020
Posts: 6
Own Kudos:
1
 [1]
Given Kudos: 69
Posts: 6
Kudos: 1
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Aren't the factors x, 02,and 6? If not, how did you come up with 0,2,4? GMATPrepNow
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 31 Oct 2025
Posts: 6,739
Own Kudos:
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,739
Kudos: 35,341
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Paugustin90
Aren't the factors x, 02,and 6? If not, how did you come up with 0,2,4? GMATPrepNow

Oops - good catch!!!
Looks like I don't know my multiplication tables! :sleep:

I've edited my solution accordingly.

Cheers,
Brent
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,588
Own Kudos:
Posts: 38,588
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105388 posts
496 posts