GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 20 Nov 2018, 10:34

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in November
PrevNext
SuMoTuWeThFrSa
28293031123
45678910
11121314151617
18192021222324
2526272829301
Open Detailed Calendar
  • All GMAT Club Tests are Free and open on November 22nd in celebration of Thanksgiving Day!

     November 22, 2018

     November 22, 2018

     10:00 PM PST

     11:00 PM PST

    Mark your calendars - All GMAT Club Tests are free and open November 22nd to celebrate Thanksgiving Day! Access will be available from 0:01 AM to 11:59 PM, Pacific Time (USA)
  • Free lesson on number properties

     November 23, 2018

     November 23, 2018

     10:00 PM PST

     11:00 PM PST

    Practice the one most important Quant section - Integer properties, and rapidly improve your skills.

What is root(x^2•y^2) if x < 0 and y > 0?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
User avatar
Joined: 16 Nov 2013
Posts: 28
Location: United States
Concentration: Entrepreneurship, General Management
GPA: 3.49
What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 21 Nov 2013, 00:51
6
31
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

65% (00:35) correct 35% (00:45) wrong based on 1324 sessions

HideShow timer Statistics

What is \(\sqrt{x^2 y^2}\) if x < 0 and y > 0?

A) -xy
B) xu
C) -|xy|
D) |y|x
E) No solution
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50711
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 21 Nov 2013, 07:26
11
17
Nai222 wrote:
hey,

Can you please explain why it is negative? I thought when the two number are enclosed within an absolute value bracket, it becomes positive.


\(-xy\) is not negative it's positive. \(xy\) is negative, thus \(-xy=-(negative)=positive\).

THEORY:
\(\sqrt{x^2}=|x|\).

The point here is that as square root function cannot give negative result then \(\sqrt{some \ expression}\geq{0}\).

So \(\sqrt{x^2}\geq{0}\). But what does \(\sqrt{x^2}\) equal to?

Let's consider following examples:
If \(x=5\) --> \(\sqrt{x^2}=\sqrt{25}=5=x=positive\);
If \(x=-5\) --> \(\sqrt{x^2}=\sqrt{25}=5=-x=positive\).

So we got that:
\(\sqrt{x^2}=x\), if \(x\geq{0}\);
\(\sqrt{x^2}=-x\), if \(x<0\).

What function does exactly the same thing? The absolute value function: \(|x|=x\), if \(x\geq{0}\) and \(|x|=-x\), if \(x<0\). That is why \(\sqrt{x^2}=|x|\).
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50711
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 21 Nov 2013, 00:53
4
11
Current Student
avatar
Joined: 29 Sep 2013
Posts: 108
GPA: 3.86
WE: Asset Management (Investment Banking)
GMAT ToolKit User Reviews Badge
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 21 Nov 2013, 07:21
hey,

Can you please explain why it is negative? I thought when the two number are enclosed within an absolute value bracket, it becomes positive.
Current Student
avatar
Joined: 29 Sep 2013
Posts: 108
GPA: 3.86
WE: Asset Management (Investment Banking)
GMAT ToolKit User Reviews Badge
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 21 Nov 2013, 07:37
WOW!!! Thank you for that explanation. I definitely get it now.

:-D :-D :-D :-D :-D :-D :-D 8-)
EMPOWERgmat Instructor
User avatar
V
Status: GMAT Assassin/Co-Founder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 12891
Location: United States (CA)
GMAT 1: 800 Q51 V49
GRE 1: Q170 V170
What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 20 Dec 2014, 19:06
Hi Nai222,

Since your post was from over a year ago, you might not still be around to read this. This question can be solved by TESTing VALUES:

We're told X < 0 and Y > 0

Let's TEST:
X = -2
Y = +2

So, we'd have \sqrt{(4)(4)} = +4

Using those values in the answers, we get...

Answer A: -(-2)(2) = +4 This IS a match

Answer B: (-2)(2) = -4 NOT a match

Answer C: - |(-2)(2)| = -4 NOT a match

Answer D: |2|(-2) = -4 NOT a match

Answer E: No solution. NOT a match

Final Answer:

GMAT assassins aren't born, they're made,
Rich
_________________

760+: Learn What GMAT Assassins Do to Score at the Highest Levels
Contact Rich at: Rich.C@empowergmat.com

Rich Cohen

Co-Founder & GMAT Assassin

Special Offer: Save $75 + GMAT Club Tests Free
  Official GMAT Exam Packs + 70 Pt. Improvement Guarantee
www.empowergmat.com/

*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****

Director
Director
User avatar
G
Joined: 23 Jan 2013
Posts: 569
Schools: Cambridge'16
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 22 Dec 2014, 01:04
for |xy| we have 4 options

xy, x-y, -xy, -x-y

A
Current Student
User avatar
D
Joined: 12 Aug 2015
Posts: 2632
Schools: Boston U '20 (M)
GRE 1: Q169 V154
GMAT ToolKit User Premium Member
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 10 Mar 2016, 10:14
Manager
Manager
avatar
B
Joined: 27 Aug 2014
Posts: 77
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 06 Sep 2017, 01:25
Bunuel wrote:
Nai222 wrote:
hey,

Can you please explain why it is negative? I thought when the two number are enclosed within an absolute value bracket, it becomes positive.


\(-xy\) is not negative it's positive. \(xy\) is negative, thus \(-xy=-(negative)=positive\).

THEORY:
\(\sqrt{x^2}=|x|\).

The point here is that as square root function cannot give negative result then \(\sqrt{some \ expression}\geq{0}\).

So \(\sqrt{x^2}\geq{0}\). But what does \(\sqrt{x^2}\) equal to?

Let's consider following examples:
If \(x=5\) --> \(\sqrt{x^2}=\sqrt{25}=5=x=positive\);
If \(x=-5\) --> \(\sqrt{x^2}=\sqrt{25}=5=-x=positive\).

So we got that:
\(\sqrt{x^2}=x\), if \(x\geq{0}\);
\(\sqrt{x^2}=-x\), if \(x<0\).

What function does exactly the same thing? The absolute value function: \(|x|=x\), if \(x\geq{0}\) and \(|x|=-x\), if \(x<0\). That is why \(\sqrt{x^2}=|x|\).



How is mod of -x equal to -x? Shouldnt it be x?
Senior SC Moderator
avatar
V
Joined: 22 May 2016
Posts: 2115
Premium Member CAT Tests
What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 07 Sep 2017, 15:48
3
1
sinhap07 wrote:
Bunuel wrote:
Nai222 wrote:
hey,

Can you please explain why it is negative? I thought when the two number are enclosed within an absolute value bracket, it becomes positive.

\(-xy\) is not negative it's positive. \(xy\) is negative, thus \(-xy=-(negative)=positive\).

THEORY:
. . .
What function does exactly the same thing [as the square root sign]? The absolute value function: \(|x|=x\), if \(x\geq{0}\) and \(|x|=-x\), if \(x<0\)...

sinhap07 How is mod of -x equal to -x? Shouldnt it be x?

sinhap07 , I assume you refer to
Quote:
\(|x|= -x\) , if \(x<0\)

For me, the rule can be counterintuitive. I've seen a few ways to think about the rule. Maybe they will help.

If x is negative, then |x| = -x

Possible ways to think about the rule:

1. "The negative of a negative is positive."

Think of the negative sign as signifying "opposite."

That is, the negative sign functions as "the negative of a negative number." And the negative of a negative number is positive. See Bunuel above in bold.

Let x = -3. Per |x| = -x:

|-3| = 3, and +3 is the opposite of -3, thus +3 = -(-3)

2. OR think: "The negative sign on RHS means (-1) multiplied by a negative number \(x\)," thus

|x| = -x
|x| = (-1)(x)
|x| = (-1)(negative #)
|x| = a positive number

3. OR think (similar to #1): "in this rule there is a hidden minus sign."

With a number, the "two negatives" are easy to see

|-3| = 3
|-3| = -(-3)

BUT: |x| = -(x) = -x

With variable \(x\), it is easy to forget that there ARE two negative signs.

With the variable, there is only one minus sign on RHS... because the negative variable \(x\) already "contains" a minus sign.

We just don't (can't) write the minus sign twice with the variable.

|-3| = -(-3) = 3
|x| = -(x) = -x

Those two equations are functionally equivalent.

4. Summary - use any negative number, substituted for x, to see that, if x < 0 , then |x| = -x. Reasons:

|-3| = 3, where +3 is the opposite of -3 [+3 = -(-3)]; RHS is the negative of a negative number

|-3| = 3 = (-1)(-3)

|-3| = -(-3) = 3

The absolute value IS positive (or nonnegative). The sign of a negative variable can obscure that fact.

Hope that helps.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50711
What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 07 Sep 2017, 16:02
3
genxer123 wrote:
sinhap07 wrote:
Bunuel wrote:
\(-xy\) is not negative it's positive. \(xy\) is negative, thus \(-xy=-(negative)=positive\).

THEORY:
. . .
What function does exactly the same thing [as the square root sign]? The absolute value function: \(|x|=x\), if \(x\geq{0}\) and \(|x|=-x\), if \(x<0\)...

sinhap07 How is mod of -x equal to -x? Shouldnt it be x?

sinhap07 , I assume you refer to
Quote:
\(|x|= -x\) , if \(x<0\)

For me, the rule can be counterintuitive. I've seen a few ways to think about the rule. Maybe they will help.

If x is negative, then |x| = -x

Possible ways to think about the rule:

1. "The negative of a negative is positive."

Think of the negative sign as signifying "opposite."

That is, the negative sign functions as "the negative of a negative number." And the negative of a negative number is positive. See Bunuel above in bold.

Let x = -3. Per |x| = -x:

|-3| = 3, and +3 is the opposite of -3, thus +3 = -(-3)

2. OR think: "The negative sign on RHS means (-1) multiplied by a negative number \(x\)," thus

|x| = -x
|x| = (-1)(x)
|x| = (-1)(negative #)
|x| = a positive number

3. OR think (similar to #1): "in this rule there is a hidden minus sign."

With a number, the "two negatives" are easy to see

|-3| = 3
|-3| = -(-3)

BUT: |x| = -(x) = -x

With variable \(x\), it is easy to forget that there ARE two negative signs.

With the variable, there is only one minus sign on RHS... because the negative variable \(x\) already "contains" a minus sign.

We just don't (can't) write the minus sign twice with the variable.

|-3| = -(-3) = 3
|x| = -(x) = -x

Those two equations are functionally equivalent.

4. Summary - use any negative number, substituted for x, to see that, if x < 0 , then |x| = -x. Reasons:

|-3| = 3, where +3 is the opposite of -3; RHS is the negative of a negative number

|-3| = (-1)(-3) = 3

|-3| = -(-3) = 3

The absolute value IS positive (or nonnegative). The sign of a negative variable can obscure that fact.

Hope that helps.


To add:

|-x| = |x|. One way to think about it is that |-x| is the distance between -x and 0 on the number line. Similarly, |x| is the distance between x and 0 on the number line. Obviously -x and x are the same distance from 0. For example, -3 and 3 are the same distance from 0; 2 and -2, are the same distance from 0...

Next, when x is 0 or negative, the rule says that |x| = -x. The absolute value cannot be negative and this rule is not violated here. For example, say x = -10, then |-10| = -(-10) = 10 = positive or generally when x is negative |x| = -x = -negative = positive. Or using the distance concept again |-10| is the distance from -10 to 0, which is 10.

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
User avatar
B
Joined: 21 Jun 2017
Posts: 84
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 13 Oct 2017, 08:51
registerincog wrote:
What is \(\sqrt{x^2 y^2}\) if x < 0 and y > 0?

A) -xy
B) xu
C) -|xy|
D) |y|x
E) No solution



If x<0, then x = (-)
if y > 0, then y = (+)
root x^2y^2 = (+), for, given the exponent is even, the power of (-) is (+)

B) xy = (-)(+) = (-) therefore insufficient
C) (-)(+) = (-)
D)(+)(-) = (-)

A) (-)(-) = (+)

Therefore, the answer is A-xy
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 8865
Premium Member
Re: What is root(x^2•y^2) if x < 0 and y > 0?  [#permalink]

Show Tags

New post 31 Oct 2018, 09:52
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Bot
Re: What is root(x^2•y^2) if x < 0 and y > 0? &nbs [#permalink] 31 Oct 2018, 09:52
Display posts from previous: Sort by

What is root(x^2•y^2) if x < 0 and y > 0?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.