Bunuel wrote:
What is the number of three digits number from 100 to 999 inclusive which have any one digit that is the average of the other two ?
A. 50
B. 60
C. 120
D. 121
E. 242
Consider integer \(ABC\).
If A is equal to the average of B and C, we get:
\(A = \frac{B+C}{2}\)
\(2A = B+C\)
Implication:
Digits B and C must sum to twice the value of A.
A --> options for B and C1 --> 0,2...............................................1,1
2 --> 0,4..........1,3................................2,2
3 --> 0,6..........1,5...2,4........................3,3
4 --> 0,8..........1,7...2,6...3,5................4,4
5 --> ...............1,9...2,8...3,7...4,6........5,5
6 --> ...............3,9...4,8...5,7................6,6
7 --> ...............5,9...6,8........................7,7
8 --> ...............7,9................................8,8
9 --> ....................................................9.9
Case 1: Digit combinations implied just to the right of the arrowsNumber of cases in the column just to the right of the arrows = 4
Number of options for the hundreds digit = 2 (Cannot be 0)
Number of options for the tens digit = 2 (Either of the two remaining digits)
Number of options for the units digit = 1 (Only 1 digit left)
To combine these options, we multiply:
4*2*2*1 = 16
Case 2: Digit combinations implied in the middle of the chartNumber of cases in the middle of the chart = 16
Number of ways to arrange the 3 digits in each case = 3! = 6
To combine these options, we multiply:
16*6 = 96
Case 3: Digit combinations implied all the way to the rightNumber of cases in the rightmost column = 9
Since the three digits in each case are identical, each case yields only one possible arrangement, for a total of 9 options.
Number of viable integers = Case 1 + Case 2 + Case 3 = 16 + 96 + 9 = 121
_________________
GMAT and GRE Tutor
New York, NY
Available for tutoring in NYC and long-distance.
For more information, please email me at GMATGuruNY@gmail.com.