josemnz83 wrote:
How is this question different from a question that asks for the value of p if p=r/3q and then tells you that the value of r=2q? Is it because we can come up with an exact value for the equation?
Exactly. It is because you can get a unique numeric value for p. Also, with the help of these two equations, we can only solve for the value of only one variable, i.e. p, and nothing else.
Quote:
I was under the impression that one needs to have three equations when dealing with three variables. Here we only have 2 equations (the original statement and r=2q?
What you are saying is true, most of the times. However, there are times, when you have 3 equations and 3 variables and still get no unique solution, or get infinitely many solutions. Also, there are times when a single equation with 2 variables might give the value of both the variables under special conditions.[For example, when the variables can only assume integral values].
For example, 2x+3y=5, you can arrive at many integral solutions for (x,y) for example (1,1),(-2,3) etc. For the given context, there might be an additional restriction;like the value of both the variables should be positive,etc in the problem, which would then help you to zero-in on a unique solution. Ergo, it will be a good idea to keep in mind that apart from the general rule of N equations and N variables, there are many variants possible, depending on the context of the given problem.
Hope this helps.
_________________