Last visit was: 19 Nov 2025, 13:40 It is currently 19 Nov 2025, 13:40
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
shrive555
Joined: 15 Sep 2010
Last visit: 26 Jun 2016
Posts: 202
Own Kudos:
2,545
 [67]
Given Kudos: 193
Status:Do and Die!!
Posts: 202
Kudos: 2,545
 [67]
8
Kudos
Add Kudos
58
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,351
 [21]
12
Kudos
Add Kudos
9
Bookmarks
Bookmark this Post
General Discussion
User avatar
shrive555
Joined: 15 Sep 2010
Last visit: 26 Jun 2016
Posts: 202
Own Kudos:
Given Kudos: 193
Status:Do and Die!!
Posts: 202
Kudos: 2,545
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
MacFauz
Joined: 02 Jul 2012
Last visit: 19 Mar 2022
Posts: 996
Own Kudos:
3,360
 [3]
Given Kudos: 116
Location: India
Concentration: Strategy
GMAT 1: 740 Q49 V42
GPA: 3.8
WE:Engineering (Energy)
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
kapsycumm
What is the value of x?

(1) \sqrt{x^4} = 9

(2) \sqrt{x^2} = -x

1) \(x^2 = 9\). So x = +3 or -3. Insufficient

2) \(\sqrt{x^2} = -x\) x can be 0 or any negative number. Insufficient

1 & 2 together. x is negative and is either +3 or -3. So x is -3.

Answer C
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,351
 [3]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,351
 [3]
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Bumping for review and further discussion*. Get a kudos point for an alternative solution!

*New project from GMAT Club!!! Check HERE

Theory on roots problems: math-number-theory-88376.html

All DS roots problems to practice: search.php?search_id=tag&tag_id=49
All PS roots problems to practice: search.php?search_id=tag&tag_id=113

Tough and tricky exponents and roots questions (DS): tough-and-tricky-exponents-and-roots-questions-125967.html
Tough and tricky exponents and roots questions (PS): new-tough-and-tricky-exponents-and-roots-questions-125956.html
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 19 Nov 2025
Posts: 16,267
Own Kudos:
77,000
 [3]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,267
Kudos: 77,000
 [3]
1
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
shrive555
What is the value of x?

(1) \(\sqrt{x^4} = 9\)
(2) \(\sqrt{x^2}=-x\)

Responding to a pm:

Quote:

how to solve second statement? i did 2nd statement squaring on both sides then got same x^2 = x^2. then what to do after this?? and also how to solve combining both 1 and 2 statement??


Squaring is not the solution for every problem. When you square both sides you sometimes lose valuable information. e.g.
x = -5
Square -> x^2 = 25

If you are given x^2 = 25, all you can say is that x is 5 or -5. You cannot say which one. So you lost information here.

As for this question, there is a concept that you need to use here \(\sqrt{x^2}= |x|\)
\(\sqrt{9} = 3\). It is not 3 or -3. Only the positive value is considered for square roots. Hence, the mod is used when dealing with a variable.

So from the second statement, you get |x| = -x
Now, we know that |x| = -x when x is negative. So the only thing that the second statement tells us is that x is negative.
Statement 1 tells you that x is 3 or -3. Statement 2 tells you that x is negative. SO using both statements, you can say that x = -3. Sufficient.
Answer (C)
avatar
keenys
Joined: 12 Mar 2013
Last visit: 27 May 2015
Posts: 12
Own Kudos:
Given Kudos: 14
Posts: 12
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
shrive555
What is the value of x?

(1) sqt/ x^4 = 9

(2) sqt/x^2 = - X

What is the value of x?

(1) \(\sqrt{x^4} = 9\) --> \(x^2=9\) --> \(x=3\) or \(x=-3\). Not sufficient.

(2) \(\sqrt{x^2}=-x\) --> \(|x|=-x\) --> just says that \(x\) is not positive (\(x\) could be 0 or any negative number). Not sufficient.

(1)+(2) As from (2) \(x\) is not positive then from (1) \(x=-3\). Sufficient.

Answer: C.


HI Bunnel,

I am slightly confuse here. Isnt it true that when the GMAT provides the square root sign for an even root, then the only accepted answer is the positive root?

How is A and B different here? If x can be negative according to A then it could be negative according to B as well. Could you please help clarify this rule?

Thanks.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,351
Kudos
Add Kudos
Bookmarks
Bookmark this Post
keenys
Bunuel
shrive555
What is the value of x?

(1) sqt/ x^4 = 9

(2) sqt/x^2 = - X

What is the value of x?

(1) \(\sqrt{x^4} = 9\) --> \(x^2=9\) --> \(x=3\) or \(x=-3\). Not sufficient.

(2) \(\sqrt{x^2}=-x\) --> \(|x|=-x\) --> just says that \(x\) is not positive (\(x\) could be 0 or any negative number). Not sufficient.

(1)+(2) As from (2) \(x\) is not positive then from (1) \(x=-3\). Sufficient.

Answer: C.


HI Bunnel,

I am slightly confuse here. Isnt it true that when the GMAT provides the square root sign for an even root, then the only accepted answer is the positive root?

How is A and B different here? If x can be negative according to A then it could be negative according to B as well. Could you please help clarify this rule?

Thanks.

Please check again: where did we get negative result?
User avatar
blueseas
User avatar
Current Student
Joined: 14 Dec 2012
Last visit: 15 Jan 2019
Posts: 577
Own Kudos:
4,510
 [2]
Given Kudos: 197
Location: India
Concentration: General Management, Operations
GMAT 1: 700 Q50 V34
GPA: 3.6
GMAT 1: 700 Q50 V34
Posts: 577
Kudos: 4,510
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
keenys

HI Bunnel,

I am slightly confuse here. Isnt it true that when the GMAT provides the square root sign for an even root, then the only accepted answer is the positive root?

How is A and B different here? If x can be negative according to A then it could be negative according to B as well. Could you please help clarify this rule?

Thanks.

whatever value comes after square root ...put a modulus over it..and then you will not get confused....
as you said..square root gives positive value..hence modulus does the same thing..
example:
\sqrt{x^4}=modulus x^2==>since x^2 is always positive(or equal to zero) we can remove mod
hence it becomes==>x^2=9....now no more square root ...hence whatever value will satisfy ...it can be positive or negative.
hence x=+3..or -3========>insufficient.

in option 2
\sqrt{x^2}=-x
remove square root and put a mod
hence
mod x= -x===>this conditions is correct only when X IS NEGATIVE...==>NOT SUFFICIENT

NOW COMBINING WE CAN ANSWER X=3==>SINCE X IS NEGATIVE..HENCE C
avatar
keenys
Joined: 12 Mar 2013
Last visit: 27 May 2015
Posts: 12
Own Kudos:
Given Kudos: 14
Posts: 12
Kudos: 2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
keenys



HI Bunnel,

I am slightly confuse here. Isnt it true that when the GMAT provides the square root sign for an even root, then the only accepted answer is the positive root?

How is A and B different here? If x can be negative according to A then it could be negative according to B as well. Could you please help clarify this rule?

Thanks.

Please check again: where did we get negative result?


I am referring to this statement - (1) \(\sqrt{x^4} = 9\) --> \(x^2=9\) --> \(x=3\) or \(x=-3\). Not sufficient.

As per your explanation in this statement, x could be 3 or -3. However, in the second statement, the explanation says

\sqrt{x^2}= |x|

My question is why in the first statement, \sqrt{x^4} not equal to |x^2|.

Thanks again.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,351
Kudos
Add Kudos
Bookmarks
Bookmark this Post
keenys
Bunuel
keenys



HI Bunnel,

I am slightly confuse here. Isnt it true that when the GMAT provides the square root sign for an even root, then the only accepted answer is the positive root?

How is A and B different here? If x can be negative according to A then it could be negative according to B as well. Could you please help clarify this rule?

Thanks.

Please check again: where did we get negative result?


I am referring to this statement - (1) \(\sqrt{x^4} = 9\) --> \(x^2=9\) --> \(x=3\) or \(x=-3\). Not sufficient.

As per your explanation in this statement, x could be 3 or -3. However, in the second statement, the explanation says

\sqrt{x^2}= |x|

My question is why in the first statement, \sqrt{x^4} not equal to |x^2|.

Thanks again.

That's because |x^2|=x^2.
User avatar
shashankism
Joined: 13 Mar 2017
Last visit: 23 Dec 2024
Posts: 609
Own Kudos:
Given Kudos: 88
Affiliations: IIT Dhanbad
Location: India
Concentration: General Management, Entrepreneurship
GPA: 3.8
WE:Engineering (Energy)
Posts: 609
Kudos: 694
Kudos
Add Kudos
Bookmarks
Bookmark this Post
shrive555
What is the value of x?

(1) \(\sqrt{x^4} = 9\)
(2) \(\sqrt{x^2}=-x\)

Given : variable x
DS : value of x

Statement 1 : \(\sqrt{x^4} = 9\)
x^4 = 81
x = +/-3
putting in the same equation we find both +3,-3 are valid soln.
NOT SUFFICIENT

Statement 2 : \(\sqrt{x^2}=-x\)
|x| = -x
so x<0
NOT SUFFICIENT

Combined : x = -3

Answer C
avatar
Saundarya
Joined: 25 May 2017
Last visit: 27 Mar 2019
Posts: 3
Given Kudos: 9
Posts: 3
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
VeritasKarishma
shrive555
What is the value of x?

(1) \(\sqrt{x^4} = 9\)
(2) \(\sqrt{x^2}=-x\)

Responding to a pm:

Quote:

how to solve second statement? i did 2nd statement squaring on both sides then got same x^2 = x^2. then what to do after this?? and also how to solve combining both 1 and 2 statement??


Squaring is not the solution for every problem. When you square both sides you sometimes lose valuable information. e.g.
x = -5
Square -> x^2 = 25

If you are given x^2 = 25, all you can say is that x is 5 or -5. You cannot say which one. So you lost information here.

As for this question, there is a concept that you need to use here \(\sqrt{x^2}= |x|\)
\(\sqrt{9} = 3\). It is not 3 or -3. Only the positive value is considered for square roots. Hence, the mod is used when dealing with a variable.

So from the second statement, you get |x| = -x
Now, we know that |x| = -x when x is negative. So the only thing that the second statement tells us is that x is negative.
Statement 1 tells you that x is 3 or -3. Statement 2 tells you that x is negative. SO using both statements, you can say that x = -3. Sufficient.
Answer (C)

Hi Experts,

I completely understand the above explanation but can you tell me why i cannot apply the below process,

statement ii.

x^(2x1/2)= x = -x
2x=0
x=0
Hence B.
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,587
Own Kudos:
Posts: 38,587
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105390 posts
496 posts