GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 26 May 2019, 10:20

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

What is the volume of the largest cylinder that can fit into a box of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 55277
What is the volume of the largest cylinder that can fit into a box of  [#permalink]

Show Tags

New post 12 Sep 2018, 00:24
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

70% (02:06) correct 30% (01:27) wrong based on 20 sessions

HideShow timer Statistics

Director
Director
User avatar
D
Joined: 18 Jul 2018
Posts: 908
Location: India
Concentration: Finance, Marketing
WE: Engineering (Energy and Utilities)
Premium Member Reviews Badge
Re: What is the volume of the largest cylinder that can fit into a box of  [#permalink]

Show Tags

New post 12 Sep 2018, 00:34
Volume of a Cylinder is Pi\(r^2\)h

Lets consider 10 as the diameter of the cylinder. radius becomes 5.

height becomes 8.

Then Volume = Pi*25*8 = 200Pi.

Is my ans wrong?
_________________
Press +1 Kudo If my post helps!
Intern
Intern
avatar
B
Joined: 27 Jul 2018
Posts: 4
Re: What is the volume of the largest cylinder that can fit into a box of  [#permalink]

Show Tags

New post 12 Sep 2018, 03:17
Afc0892 wrote:
Volume of a Cylinder is Pi\(r^2\)h

Lets consider 10 as the diameter of the cylinder. radius becomes 5.

height becomes 8.

Then Volume = Pi*25*8 = 200Pi.

Is my ans wrong?



You are taking length of box as 10, then width also needs to be at least 10 so that the cylinder fits the box, which is not the case in the given question.
You can take length as 8, so that radius=4. We should take width as 10 to fit the cylinder and height would be 6.

Then height=6
Volume= pi*4*4*6= 96*pi

If we take another case, in which we take length as 8 and 6, so that diameter=6, then height of cylinder=10

Then volume in this case:
V= pi * 3*3*10=90*pi

Hence 96*pi is the largest volume.
CEO
CEO
User avatar
D
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2933
Location: India
GMAT: INSIGHT
Schools: Darden '21
WE: Education (Education)
Reviews Badge
What is the volume of the largest cylinder that can fit into a box of  [#permalink]

Show Tags

New post 12 Sep 2018, 05:32
Bunuel wrote:
What is the volume of the largest cylinder that can fit into a box of dimensions 6 by 8 by 10?

A. 480
B. 160π
C. 270
D. 96π
E. 90


Dimesion of box = 6 by 8 by 10

for Cylinder to have maximum volume teh radius should be as large as possible

If the circular face of cylinder is placed on the face of box with dimension 8x10 then the diameter of cylinder may be 8 at the most

i.e. Radius = 8/2 = 4 and height = 6
Volume \(= πr^2*h = π*4^2*6 = 96π\)

Answer: option D
_________________
Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION
CEO
CEO
User avatar
D
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 2933
Location: India
GMAT: INSIGHT
Schools: Darden '21
WE: Education (Education)
Reviews Badge
What is the volume of the largest cylinder that can fit into a box of  [#permalink]

Show Tags

New post 12 Sep 2018, 05:37
1
Afc0892 wrote:
Volume of a Cylinder is Pi\(r^2\)h

Lets consider 10 as the diameter of the cylinder. radius becomes 5.

height becomes 8.

Then Volume = Pi*25*8 = 200Pi.

Is my ans wrong?


Afc0892

Yes, Your answer is wrong because of circular face lies on the rectangular face of dimension 6x10 then the maximum diameter may be 6 if height is taken as 8
There are three cases


1) Circular face of cylinder lies on face with dimension 6x8, then Diameter = 6 and Height = 10, Now Volume \(= π*r^2*h = π*3^2*10 = 90π\)

2) Circular face of cylinder lies on face with dimension 6x10, then Diameter = 6 and Height = 8, Now Volume \(= π*r^2*h = π*3^2*8 = 72π\)

3) Circular face of cylinder lies on face with dimension 8x10, then Diameter = 8 and Height = 6, Now Volume \(= π*r^2*h = π*4^2*6 = 96π\)

I hope this helps!!!
_________________
Prosper!!!
GMATinsight
Bhoopendra Singh and Dr.Sushma Jha
e-mail: info@GMATinsight.com I Call us : +91-9999687183 / 9891333772
Online One-on-One Skype based classes and Classroom Coaching in South and West Delhi
http://www.GMATinsight.com/testimonials.html

ACCESS FREE GMAT TESTS HERE:22 ONLINE FREE (FULL LENGTH) GMAT CAT (PRACTICE TESTS) LINK COLLECTION
Director
Director
User avatar
D
Joined: 18 Jul 2018
Posts: 908
Location: India
Concentration: Finance, Marketing
WE: Engineering (Energy and Utilities)
Premium Member Reviews Badge
Re: What is the volume of the largest cylinder that can fit into a box of  [#permalink]

Show Tags

New post 12 Sep 2018, 05:40
GMATinsight wrote:
Afc0892 wrote:
Volume of a Cylinder is Pi\(r^2\)h

Lets consider 10 as the diameter of the cylinder. radius becomes 5.

height becomes 8.

Then Volume = Pi*25*8 = 200Pi.

Is my ans wrong?


Afc0892

Yes, Your answer is wrong because of circular face lies on the rectangular face of dimension 6x10 then the maximum diameter may be 6 if height is taken as 8
There are three cases


1) Circular face of cylinder lies on face with dimension 6x8, then Diameter = 6 and Height = 10, Now Volume \(= π*r^2*h = π*3^2*10 = 90π\)

2) Circular face of cylinder lies on face with dimension 6x10, then Diameter = 6 and Height = 8, Now Volume \(= π*r^2*h = π*3^2*8 = 72π\)

3) Circular face of cylinder lies on face with dimension 8x10, then Diameter = 8 and Height = 6, Now Volume \(= π*r^2*h = π*4^2*6 = 96π\)

I hope this helps!!!


Understood. Thanks sir. :)
_________________
Press +1 Kudo If my post helps!
Target Test Prep Representative
User avatar
D
Status: Founder & CEO
Affiliations: Target Test Prep
Joined: 14 Oct 2015
Posts: 6241
Location: United States (CA)
Re: What is the volume of the largest cylinder that can fit into a box of  [#permalink]

Show Tags

New post 14 Sep 2018, 17:41
Bunuel wrote:
What is the volume of the largest cylinder that can fit into a box of dimensions 6 by 8 by 10?

A. 480
B. 160π
C. 270
D. 96π
E. 90


The largest cylinder that will fit into a box of dimensions 6 by 8 by 10 will have the diameter of its base equal to one of the dimensions of the box and the height equal to another dimension of the box. Furthermore, if the base of the cylinder rests on a face of the box that is a by b, then the diameter of the base can’t exceed the lesser of a and b. For example, if the base of the cylinder rests on a face of the box that is 6 by 8, then the diameter of the base can’t exceed 6. With this in mind, let’s explore all the possible options of the volume of the cylinder. Recall that the volume of a cylinder is V = πr^2h

1) The base rests on a face that is 6 by 8; thus, the diameter = 6 and hence the radius = 3 and height = 10.

V = π(3)^2(10) = 90π


2) The base rests on a face that is 6 by 10; thus, the diameter = 6 and hence the radius = 3 and height = 8.

V = π(3)^2(8) = 72π

3) The base rests on a face that is 8 by 10; thus, the diameter = 8 and hence the radius = 4 and height = 6.

V = π(4)^2(6) = 96π

We see that 96π is the largest possible volume for the cylinder.

Answer: D
_________________

Scott Woodbury-Stewart

Founder and CEO

Scott@TargetTestPrep.com
TTP - Target Test Prep Logo
122 Reviews

5-star rated online GMAT quant
self study course

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

GMAT Club Bot
Re: What is the volume of the largest cylinder that can fit into a box of   [#permalink] 14 Sep 2018, 17:41
Display posts from previous: Sort by

What is the volume of the largest cylinder that can fit into a box of

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.