Bunuel
Which of the following is the value of \(\frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2} } + \frac{1}{2 + \sqrt{3} }\)?
A. \(\frac{1}{3 + 2\sqrt{2} + 2\sqrt{3} }\)
B. \(\frac{3}{3 + 2\sqrt{2} + 2\sqrt{3} }\)
C. 1/3
D. 3/7
E. 1
The square root in the denominator should get you thinking on how to remove them.
\(\frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2} } + \frac{1}{2 + \sqrt{3} }\)
\(\frac{1*(\sqrt{2} - 1)}{(\sqrt{2} +1)(\sqrt{2} - 1)} + \frac{1*(\sqrt{3} - \sqrt{2} )}{(\sqrt{3} + \sqrt{2}) (\sqrt{3} - \sqrt{2} ) } + \frac{1 (2 - \sqrt{3}) }{(2 + \sqrt{3}) (2 - \sqrt{3}) }\)
\(\frac{(\sqrt{2} - 1)}{2-1} + \frac{(\sqrt{3} - \sqrt{2} )}{3-2 } + \frac{(2 - \sqrt{3}) }{4-3 }\)
\({(\sqrt{2} - 1)}+ {(\sqrt{3} - \sqrt{2} )}+ {(2 - \sqrt{3}) }\)
\(2-1\)
\(1\)
E
You could also guess
\(\frac{1}{\sqrt{2} + 1} + \frac{1}{\sqrt{3} + \sqrt{2} } + \frac{1}{2 + \sqrt{3} }\)
\(\frac{1}{1.4 + 1} + \frac{1}{1.7 + 1.4} + \frac{1}{2+1.7}\)
\(\frac{1}{2.4 } + \frac{1}{3.1} + \frac{1}{3.7}\)
The first fraction is more than 1/3 just less than 1/2, second term is around 1/3. Just these two combined should give you answer greater than 2/3.
Only E is left.