Bunuel
Working continuously 24 hours a day, a factory bottles Soda Q at a rate of 500 liters per second and Soda V at a rate of 300 liters per second. If twice as many bottles of Soda V as of Soda Q are filled at the factory each day, what is the ratio of the volume of a bottle of Soda Q to a bottle of Soda V?
(A) \(\frac{3}{10}\)
(B) \(\frac{5}{6}\)
(C) \(\frac{6}{5}\)
(D) \(\frac{8}{3}\)
(E) \(\frac{10}{3}\)
\(Q:\,\,\,\,\frac{{500\,\,{\text{liters}}}}{{1\,\,{\text{second}}}}\,\,\,\,\,\,\,;\,\,\,\,\,\,\frac{{k\,\,{\text{bottles}}}}{{\left( {{\text{any}}\,\,{\text{time}}\,\,{\text{fixed,}}\,\,{\text{say}}} \right)\,\,\,\,1\,\,\,{\text{second}}}}\)
\(V:\,\,\,\,\frac{{300\,\,{\text{liters}}}}{{1\,\,{\text{second}}}}\,\,\,\,\,\,\,;\,\,\,\,\,\,\frac{{2k\,\,{\text{bottles}}}}{{\left( {{\text{same}}\,\,{\text{time}}\,\,{\text{fixed}}} \right)\,\,\,\,1\,\,\,{\text{second}}}}\)
(We could explore a particular case, say k=1, it doesn´t matter. We left "k" so that you will have a "better feeling" of the whole structure!)
\(? = \frac{{{\text{volume}}\,\,{\text{bottle}}\,\,Q}}{{{\text{volume}}\,\,{\text{bottle}}\,\,V}}\)
Let´s use UNITS CONTROL, one of the most powerful tools of our method!
\(Q:\,\,\,\,\,\,\,\frac{{500\,\,{\text{liters}}}}{{1\,\,{\text{second}}}}\,\,\,\left( {\frac{{1\,\,\,{\text{second}}}}{{\,k\,\,{\text{bottles}}\,}}\,\,\begin{array}{*{20}{c}}\\
\nearrow \\ \\
\nearrow \\
\end{array}} \right)\,\,\, = \,\,\,\frac{{500\,\,\,{\text{liters}}}}{{k\,\,\,{\text{bottles}}}} = \frac{{\frac{{500}}{k}\,\,\,{\text{liters}}}}{{1\,\,\,{\text{bottle}}}}\)
\(V:\,\,\,\,\,\,\,\frac{{300\,\,{\text{liters}}}}{{1\,\,{\text{second}}}}\,\,\,\left( {\frac{{1\,\,\,{\text{second}}}}{{\,2k\,\,{\text{bottles}}\,}}\,\,\begin{array}{*{20}{c}}\\
\nearrow \\ \\
\nearrow \\
\end{array}} \right)\,\,\, = \,\,\,\frac{{300\,\,\,{\text{liters}}}}{{2k\,\,\,{\text{bottles}}}} = \frac{{\frac{{150}}{k}\,\,\,{\text{liters}}}}{{1\,\,\,{\text{bottle}}}}\)
Obs.: arrows indicate
licit converters.
\(? = \frac{{\,\,\,\frac{{500}}{k}\,\,\,}}{{\frac{{150}}{k}}} = \frac{{50}}{{15}} = \frac{{10}}{3}\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.