given condition
If \(abc < 0\) and \(acd > 0\)
abc <0 ; possible
case 1 : all are -ve
case 2 : two are + and third is -ve
acd >0
case 1 : all are +ve
case 2 : two values are -ve and third is +ve
we can write it as abc <0 and acd>0
cases
1 . a ( -) b( +) c ( +) d ( -)
2. a ( -) b ( -) c ( -) d ( +)
3. a ( +) b ( +) c ( -) d (-)
4. a ( +) b ( -) c ( +) d (+)
answer options given which shall be always +ve
A. \(a^4b^4c^3d^5\) will not be true in case 1, 2
B. \(a^4b^4c^4d^5\)will not be true in case 1, 3,
C. \(a^5b^5c^4d^3\)will not be true in case 3, 4
D. \(a^5b^3c^5d^5\)will not br true in case 2, 4
E. \(a^5b^2c^5d^5\)
True for all cases
OPTION E is correct
Bunuel
12 Days of Christmas GMAT Competition with Lots of FunIf \(abc < 0\) and \(acd > 0\), which of the following is definitely positive ?
A. \(a^4b^4c^3d^5\)
B. \(a^4b^4c^4d^5\)
C. \(a^5b^5c^4d^3\)
D. \(a^5b^3c^5d^5\)
E. \(a^5b^2c^5d^5\)