Last visit was: 19 Nov 2025, 12:42 It is currently 19 Nov 2025, 12:42
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
kamilaak
Joined: 15 Apr 2007
Last visit: 31 Aug 2008
Posts: 31
Own Kudos:
203
 [195]
Posts: 31
Kudos: 203
 [195]
14
Kudos
Add Kudos
180
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
 [118]
30
Kudos
Add Kudos
88
Bookmarks
Bookmark this Post
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
 [71]
26
Kudos
Add Kudos
44
Bookmarks
Bookmark this Post
General Discussion
User avatar
maratikus
Joined: 01 Jan 2008
Last visit: 22 Jul 2010
Posts: 257
Own Kudos:
342
 [14]
Given Kudos: 1
Posts: 257
Kudos: 342
 [14]
10
Kudos
Add Kudos
4
Bookmarks
Bookmark this Post
The answer is C. Let's look at a committee where Mike belongs (he's person # 1) on that committee. When we choose person #2, there is a 1/5 probability that it's going to be Anthony (then it doesn't matter who the third person is), and 4/5 probability that it's going to be someone else (then person #3 is going to be Anthony with probability 1/4). Total probability = 1/5+4/5*1/4 = 2/5
User avatar
srini123
Joined: 13 Oct 2009
Last visit: 17 Feb 2021
Posts: 152
Own Kudos:
264
 [3]
Given Kudos: 38
Affiliations: PMP
Posts: 152
Kudos: 264
 [3]
2
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Bunuel - the fourth approach you posted seems to have an error:

Fourth approach:
Total # of splitting group of 6 into two groups of 3: 6C3*3C3/2!=10
# of groups with Michael and Anthony: 1C1*1C1*4C1=4
P=4/10=40%

Total # of splitting group of 6 into two groups of 3: should be 6C3*3C3=20 and not 10.
Out of these 20 , there are 10 groups with Michael in it

so answer = groups with michael and anthony/ total groups with michael = 4/10 = 40%
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,343
 [7]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
 [7]
2
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
srini123
Bunuel - the fourth approach you posted seems to have an error:

Fourth approach:
Total # of splitting group of 6 into two groups of 3: 6C3*3C3/2!=10
# of groups with Michael and Anthony: 1C1*1C1*4C1=4
P=4/10=40%

Total # of splitting group of 6 into two groups of 3: should be 6C3*3C3=20 and not 10.
Out of these 20 , there are 10 groups with Michael in it

so answer = groups with michael and anthony/ total groups with michael = 4/10 = 40%

Do we have group #1 and #2? Does it matter in which group Michael and Anthony will be? If no we should divide 6C3*3C3 by 2! and get 10 different split ups of 6 to groups of 3 when order of groups doesn't matter.

# of groups with Michael and Anthony together: 1C1*1C1*4C1=4
P=4/10=40%.

The number of ways in which mn different items can be divided equally into m groups, each containing n objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).
\(\frac{6!}{(3!)^2*2!}=10\)

OR another way:
In our case \(\frac{6C3*3C3}{2!}=10.\)
User avatar
srini123
Joined: 13 Oct 2009
Last visit: 17 Feb 2021
Posts: 152
Own Kudos:
264
 [1]
Given Kudos: 38
Affiliations: PMP
Posts: 152
Kudos: 264
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
srini123
Bunuel - the fourth approach you posted seems to have an error:

Fourth approach:
Total # of splitting group of 6 into two groups of 3: 6C3*3C3/2!=10
# of groups with Michael and Anthony: 1C1*1C1*4C1=4
P=4/10=40%

Total # of splitting group of 6 into two groups of 3: should be 6C3*3C3=20 and not 10.
Out of these 20 , there are 10 groups with Michael in it

so answer = groups with michael and anthony/ total groups with michael = 4/10 = 40%

Do we have group #1 and #2? Does it matter in which group Michael and Anthony will be? If no we should divide 6C3*3C3 by 2! and get 10 different split ups of 6 to groups of 3 when order of groups doesn't matter.

# of groups with Michael and Anthony together: 1C1*1C1*4C1=4
P=4/10=40%.

The number of ways in which mn different items can be divided equally into m groups, each containing n objects and the order of the groups is not important is \(\frac{(mn)!}{(n!)^m*m!}\).
\(\frac{6!}{(3!)^2*2!}=10\)

OR another way:
In our case \(\frac{6C3*3C3}{2!}=10.\)


Sorry I may be missing something but, if we want to split 6 persons into 2 groups of 3 where order doesn't matter. dont we have 20 groups ?
for eg., let A,B,C,D,E,F be 6 people and the
groups with 3 people in each will be as below

ABC, ABD, ABE, ABF, ACD, ACE, ACF, ADE, ADF, AEF - 10
BCD, BCE,BCE, BDE,BDF, BEF - 6
CDE, CDE,CEF -3
DEF -1

total 20.

Let A be michael for this question , then total groups we have with michael is 10 and 4 groups have Michael and Anthony (assume D=anthony)

im sorry im still not getting why 20 is not the total groups irrespective of michael in it or not
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,343
 [5]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
 [5]
4
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
srini123

Sorry I may be missing something but, if we want to split 6 persons into 2 groups of 3 where order doesn't matter. dont we have 20 groups ?
for eg., let A,B,C,D,E,F be 6 people and the
groups with 3 people in each will be as below

ABC, ABD, ABE, ABF, ACD, ACE, ACF, ADE, ADF, AEF - 10
BCD, BCE,BCE, BDE,BDF, BEF - 6
CDE, CDE,CEF -3
DEF -1

total 20.

Let A be michael for this question , then total groups we have with michael is 10 and 4 groups have Michael and Anthony (assume D=anthony)

im sorry im still not getting why 20 is not the total groups irrespective of michael in it or not

Now I see what you've meant. But I think it's not quite true and here is where you are making the mistake: you listed # of selections of three out of 6 - 6C3=20. This is different from splitting the group into TWO groups of three members each:

1. ABC - DEF
2. ABD - CEF
3. ABE - CDF
4. ABF - CDE
5. ACD - BEF
6. ACE - BDF
7. ACF - BDE
8. ADE - BCF
9. ADF - BCE
10. AEF - BCD

So, here are all possible ways to split 6 people into two groups of three members each. Let's say Anthony is A and Michael is B. You can see that there are only 4 scenarios when A and B are in one group (1,2,3,4). Hence 4/10.
User avatar
Barkatis
Joined: 19 Sep 2010
Last visit: 31 Jan 2011
Posts: 18
Own Kudos:
Posts: 18
Kudos: 495
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks.
Just a question: I noticed that you responded very quickly to my posts. Which I thank you for. But I am wondering if it's ok that I post questions that have been obviously posted before. If it's a problem then please tell me how can I check whether a question is already on the forum or not. Thanks.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,343
 [2]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
 [2]
2
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Barkatis
Thanks.
Just a question: I noticed that you responded very quickly to my posts. Which I thank you for. But I am wondering if it's ok that I post questions that have been obviously posted before. If it's a problem then please tell me how can I check whether a question is already on the forum or not. Thanks.

Generally it's a good idea to do the search before posting, for example I would search in PS subforum (there is a search field above the topics) for the word "Anthony", don't think that there are many questions with this name. Though it's not a probelm to post a question that was posted before: if moderators find previous discussions they will merge the topics, copy the solution from there or give a link to it.
User avatar
Barkatis
Joined: 19 Sep 2010
Last visit: 31 Jan 2011
Posts: 18
Own Kudos:
495
 [1]
Posts: 18
Kudos: 495
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel, A question just came to my mind concerning the second approach of the solution that you proposed:

total # of winning outcomes
Select Anthony: 1C1=1, select any third member out of 4: 4C1=4, total # =1C1*4C1=4

If we say 1C1*4C1 don't we assume that the winning can be either (Anthony,Third member) or (Third member, Anthony) but not both ?
shouldn't we multiply 1C1*4C1 by 2 to get the total number of possible combinations ?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Barkatis
Bunuel, A question just came to my mind concerning the second approach of the solution that you proposed:

total # of winning outcomes
Select Anthony: 1C1=1, select any third member out of 4: 4C1=4, total # =1C1*4C1=4

If we say 1C1*4C1 don't we assume that the winning can be either (Anthony,Third member) or (Third member, Anthony) but not both ?
shouldn't we multiply 1C1*4C1 by 2 to get the total number of possible combinations ?

We are counting # of committees with Anthony and Michael:

{M,A,1};
{M,A,2};
{M,A,3};
{M,A,4}.

Here {M,A,1} is the same committee as {M,1,A}.
User avatar
praveenvino
Joined: 06 Nov 2010
Last visit: 10 Dec 2011
Posts: 16
Own Kudos:
Given Kudos: 16
Posts: 16
Kudos: 95
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel, can you advise why do we have to divide 6C3 * 3C3 by 2!, in the fourth approach ?
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,343
 [9]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
 [9]
2
Kudos
Add Kudos
7
Bookmarks
Bookmark this Post
praveenvino
Bunuel, can you advise why do we have to divide 6C3 * 3C3 by 2!, in the fourth approach ?

We are dividing by 2! (factorial of the # of groups) because the order of the groups is not important (we don't have the group #1 and the group #2) and we need to get rid of the duplications.

Dividing a group into subgroups:
combinations-problems-95344.html
split-the-group-101813.html
9-people-and-combinatorics-101722.html
ways-to-divide-99053.html
combination-and-selection-into-team-106277.html
ways-to-split-a-group-of-6-boys-into-two-groups-of-3-boys-ea-105381.html
User avatar
fortsill
Joined: 24 Feb 2012
Last visit: 07 Jun 2012
Posts: 23
Own Kudos:
Given Kudos: 18
Posts: 23
Kudos: 33
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel

Fourth approach:
Total # of splitting group of 6 into two groups of 3: 6C3*3C3/2!=10

Do you mind elaborating on that calculation, please? Isn't 6C3 the right calculation to select 3 people from a group of 6? You seem to be multiplying that by 3C3/2!

Is there another example that illustrates this - 6C3*3C3/2!- concept, thanks.
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 19 Nov 2025
Posts: 105,390
Own Kudos:
778,343
 [8]
Given Kudos: 99,977
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,390
Kudos: 778,343
 [8]
5
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
fortsill
Bunuel

Fourth approach:
Total # of splitting group of 6 into two groups of 3: 6C3*3C3/2!=10

Do you mind elaborating on that calculation, please? Isn't 6C3 the right calculation to select 3 people from a group of 6? You seem to be multiplying that by 3C3/2!

Is there another example that illustrates this - 6C3*3C3/2!- concept, thanks.

I guess your main concern is about dividing by 2! (because 3C3 is just selecting 3 out of 3 which is 1).

Dividing group of 6 objects {A, B, C, D, E, F} into 2 groups of 3: \(\frac{C^3_6*C^3_3}{2!}=10\), we are dividing by \(2!\) as there are 2 groups and order of these groups doesn't matter.

For example if we choose with \(C^3_6\) the group {ABC} then the group {DEF} is left and we have two groups {ABC} and {DEF} but then we could choose also {DEF}, so in this case second group would be {ABC}, so we would have the same two groups: {ABC} and {DEF}. So to get rid of such duplications we should divide \(C^3_6*C^3_3\) by factorial of number of groups - 2!.

Questions about the same concept to practice:
in-how-many-different-ways-can-a-group-of-8-people-be-125985.html
a-group-of-8-friends-want-to-play-doubles-tennis-how-many-106277.html
how-many-ways-are-there-to-split-a-group-of-6-boys-into-two-105381.html
a-group-of-8-friends-want-to-play-doubles-tennis-how-many-104807.html
in-how-many-different-ways-can-a-group-of-9-people-be-101722.html
in-how-many-different-ways-can-a-group-of-8-people-be-99053.html
nine-dogs-are-split-into-3-groups-to-pull-one-of-three-88685.html
in-how-many-different-ways-can-a-group-of-8-people-be-85707.html

Hope it helps.
avatar
bhavinshah5685
Joined: 25 Jun 2012
Last visit: 19 Jun 2017
Posts: 49
Own Kudos:
316
 [7]
Given Kudos: 21
Location: India
WE:General Management (Energy)
Posts: 49
Kudos: 316
 [7]
7
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Totak ways to select 3 members from 6 members = 6C3 = 6!/3!*3! = 20
Now if the sis members are A,M,X1,X2,X3,X4 , take A & M together as a sing le unit Y.
Y = A,M, they can be selected as 2! ways = 2
Grups can be made as = YX1, YX2,YX3 & YX4 = 4
Total grups = 4*2=8

Now % is = 8/20*100=40% is the answer
User avatar
GMATPill
Joined: 14 Apr 2009
Last visit: 17 Sep 2020
Posts: 2,260
Own Kudos:
3,817
 [1]
Given Kudos: 8
Location: New York, NY
Posts: 2,260
Kudos: 3,817
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Here's some clarification for those who are still confused.

First group of 6

| | | | | |

Gets broken into 2 subcommittees of 3 each:

| | | | | |

We know Michael is already in one of them:

M | | | | |

We just need to fill in one of those two slots next to Michael with an "A" for Anthony.


So we already know Mike is in that slot and that there are 5 remaining choices.

Well, how many ways can we pick Anthony such that he ends up in Michael's group?

Keep in mind that order matters - meaning Michael in the 1st slot is counted separately from Michael in the 2nd slot, etc.

so we can multiply a line of nCr formulas:

[ (Out of 1 available Michael, pick that 1 Anthony for that 2nd spot) * (Out of the remaining 4, choose any 1 for that 3rd spot) ]
= --------------------------------------------------------------------------------------------------------------------------------------------------------------------
(Out of the initial 5 remaining people, choose 2 to fill up the 2nd and 3rd slots)


= [ (1C1) * (4C1) ] / (5C2)

= 4 / 10

= 40%

Hope that helps.
User avatar
mbaiseasy
Joined: 13 Aug 2012
Last visit: 29 Dec 2013
Posts: 322
Own Kudos:
2,049
 [5]
Given Kudos: 11
Concentration: Marketing, Finance
GPA: 3.23
Posts: 322
Kudos: 2,049
 [5]
5
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Barkatis
Anthony and Michael sit on the six-member board of directors for company X. If the board is to be split up into 2 three-person subcommittees, what percent of all the possible subcommittees that include Michael also include Anthony?

A. 20%
B. 30%
C. 40%
D. 50%
E. 60%

Here is my approach:

I first counted the possible creation of 2 subcommittees without restriction: \(\frac{6!}{3!3!}* \frac{3!}{3!}= 20\)
Then, I now proceed to counting the number of ways to create committee with Michael and Anthony together.

M A _ + _ _ _ = \(\frac{4!}{1!3!} * \frac{1!}{1!} = 4\)

MA could be in group#1 or group#2. Thus, \(=4*2 = 8\)

Final calculation: \(8/20 = 4/10 = 40%\)

Answer: C
avatar
jegf1987
Joined: 26 Sep 2015
Last visit: 25 Oct 2016
Posts: 2
Given Kudos: 454
Posts: 2
Kudos: 0
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Barkatis
Anthony and Michael sit on the six-member board of directors for company X. If the board is to be split up into 2 three-person subcommittees, what percent of all the possible subcommittees that include Michael also include Anthony?

A. 20%
B. 30%
C. 40%
D. 50%
E. 60%

First approach:
Let's take the group with Michael: there is a place for two other members and one of them should be taken by Anthony, as there are total of 5 people left, hence there is probability of 2/5=40%.

Second approach:
Again in Michael's group 2 places are left, # of selections of 2 out of 5 5C2=10 - total # of outcomes.
Select Anthony - 1C1=1, select any third member out of 4 - 4C1=4, total # =1C1*4C1=4 - total # of winning outcomes.
P=# of winning outcomes/# of outcomes=4/10=40%

Third approach:
Michael's group:
Select Anthony as a second member out of 5 - 1/5 and any other as a third one out of 4 left 4/4, total=1/5*4/4=1/5;
Select any member but Anthony as second member out of 5 - 4/5 and Anthony as a third out of 4 left 1/4, total=4/5*1/4=1/5;
Sum=1/5+1/5=2/5=40%

Fourth approach:
Total # of splitting group of 6 into two groups of 3: 6C3*3C3/2!=10
# of groups with Michael and Anthony: 1C1*1C1*4C1=4
P=4/10=40%

Answer: C.

Hope it helps.

Hi Bunnuel,

On approach 3, are you implying that the order does matter? By calculating the odds of picking Anthony in the second position and anyone else in the third position AND the odds of picking anyone except Anthony in the second position and Anthony in the 3rd position you are basically establishing that the order does matter (whether Anthony is in the second or 3rd position).

Can you clarify? I am sure there is something wronog in my thought process. Thanks.
 1   2   
Moderators:
Math Expert
105390 posts
Tuck School Moderator
805 posts