Last visit was: 18 Nov 2025, 15:46 It is currently 18 Nov 2025, 15:46
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
enigma123
Joined: 25 Jun 2011
Last visit: 16 Mar 2016
Posts: 392
Own Kudos:
19,292
 [53]
Given Kudos: 217
Status:Finally Done. Admitted in Kellogg for 2015 intake
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE:Information Technology (Consulting)
GMAT 1: 730 Q49 V45
Posts: 392
Kudos: 19,292
 [53]
10
Kudos
Add Kudos
43
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 18 Nov 2025
Posts: 105,355
Own Kudos:
Given Kudos: 99,964
Products:
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 105,355
Kudos: 778,068
 [12]
7
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
User avatar
alchemist009
Joined: 22 Apr 2011
Last visit: 06 Oct 2016
Posts: 102
Own Kudos:
662
 [1]
Given Kudos: 18
Concentration: Accounting
Schools:Mccombs business school, Mays business school, Rotman Business School,
GPA: 3.44
Posts: 102
Kudos: 662
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
User avatar
narangvaibhav
Joined: 30 Jun 2011
Last visit: 17 Aug 2012
Posts: 98
Own Kudos:
Given Kudos: 12
Affiliations: Project Management Professional (PMP)
Location: New Delhi, India
Concentration: Marketing
Posts: 98
Kudos: 160
Kudos
Add Kudos
Bookmarks
Bookmark this Post
alchemist009
An infinite sequence of positive integers is called a “"coprime
sequence" ”if no term in the sequence shares a common divisor
(except 1) with any other term in the sequence. If S is an inf…inite
sequence of distinct positive integers, is S a coprime sequence?
(1) An in…finite number of integers in S are prime.
(2) Each term in S has exactly two factors.

does the statement 1 mean that all numbers in sequence S are prime???
IMO answer is "B"
we have to determine if all the integers in series are prime or not

stm 1: it says number of integers is prime so the series can contain prime numbers or not hence : NOT SUFFICIENT

Stm 2: Each number is a prime number : Hence SUFFICIENT
User avatar
gmatprav
Joined: 25 Oct 2013
Last visit: 19 Nov 2015
Posts: 111
Own Kudos:
185
 [3]
Given Kudos: 55
Posts: 111
Kudos: 185
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Nice, nice nice. Fell into trap and chose wrong answer. Statement 1 seems like each number in s is prime but it is not! Statement 2 makes it look like the numbers are not prime but indeed they are!
avatar
sayansarkar
Joined: 28 Jul 2013
Last visit: 15 Sep 2020
Posts: 43
Own Kudos:
Given Kudos: 37
Location: India
Concentration: Marketing, Strategy
GPA: 3.62
WE:Engineering (Manufacturing)
Posts: 43
Kudos: 106
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel: if two terms are 2 in the sequence S....(2,2,3,4,5..............) here the two terms have 2 as a common divisor. The question says that a coprime sequence will not have any other factor common to any other number except 1.
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,265
Own Kudos:
76,981
 [1]
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,265
Kudos: 76,981
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sayansarkar
Bunuel: if two terms are 2 in the sequence S....(2,2,3,4,5..............) here the two terms have 2 as a common divisor. The question says that a coprime sequence will not have any other factor common to any other number except 1.

You are given that S has distinct integers. So two terms cannot be 2 each.
avatar
sayansarkar
Joined: 28 Jul 2013
Last visit: 15 Sep 2020
Posts: 43
Own Kudos:
Given Kudos: 37
Location: India
Concentration: Marketing, Strategy
GPA: 3.62
WE:Engineering (Manufacturing)
Posts: 43
Kudos: 106
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks Karishma....You have discovered my other problem....I tend to read super fast and miss things in the process....my biggest weakness...
User avatar
KarishmaB
Joined: 16 Oct 2010
Last visit: 18 Nov 2025
Posts: 16,265
Own Kudos:
Given Kudos: 482
Location: Pune, India
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 16,265
Kudos: 76,981
Kudos
Add Kudos
Bookmarks
Bookmark this Post
sayansarkar
Thanks Karishma....You have discovered my other problem....I tend to read super fast and miss things in the process....my biggest weakness...

Reading super fast is great for RC. For all others, it is not advisable. You have enough time so slow down a bit.
User avatar
AbdurRakib
Joined: 11 May 2014
Last visit: 08 Nov 2025
Posts: 465
Own Kudos:
Given Kudos: 220
Status:I don't stop when I'm Tired,I stop when I'm done
Location: Bangladesh
Concentration: Finance, Leadership
GPA: 2.81
WE:Business Development (Real Estate)
Posts: 465
Kudos: 42,841
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
An infi…nite sequence of positive integers is called a “coprime sequence ”if no term in the sequence shares a common divisor (except 1) with any other term in the sequence. If S is an in…finite sequence of distinct positive integers, is S a coprime sequence?

Notice that S is an in…finite sequence of distinct positive integers.

(1) An infinite number of integers in S are prime --> obviously these primes will be coprime to each other. But we don't know whether the sequence contains some numbers other than primes, and if it does then the sequence won't be coprime (for example the sequence can contain 4 and 6 in addition to these primes). Not Sufficient.

(2) Each term in S has exactly two factors --> each term in S is a prime, so S contains only distinct primes, which will be coprime. Sufficient.

Answer: B.

Great analysis.

Can you just provide similar tricky(referred to Statement 1 type trap) question to practice?

Thanks
User avatar
Madhavi1990
Joined: 15 Jan 2017
Last visit: 15 Jul 2021
Posts: 254
Own Kudos:
Given Kudos: 931
Posts: 254
Kudos: 93
Kudos
Add Kudos
Bookmarks
Bookmark this Post
A) An infinite number of integers in S are prime.
^ would mean; what about the other integers? there maybe infinite PRIME integers in S but what about non prime?So NS
B)Each term in S has exactly two factors.
Only a prime has ITSELF and one as their factors.

B is Sufficient
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 38,586
Own Kudos:
Posts: 38,586
Kudos: 1,079
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
105355 posts
496 posts