GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Sep 2018, 06:03

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 06 Jan 2008
Posts: 215
Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post Updated on: 05 Apr 2018, 13:19
19
121
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

56% (00:57) correct 44% (00:59) wrong based on 2612 sessions

HideShow timer Statistics

Are x and y both positive?


(1) \(2x - 2y = 1\)

(2) \(\frac{x}{y} > 1\)

Originally posted by Manbehindthecurtain on 03 May 2008, 09:11.
Last edited by Bunuel on 05 Apr 2018, 13:19, edited 4 times in total.
Edited the question.
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49320
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 19 Jul 2010, 11:32
54
54

9. Inequalities



For more check Ultimate GMAT Quantitative Megathread



Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49320
Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 10 May 2010, 14:07
19
19
Are x and y both positive?


(1) \(2x-2y=1\). Well this one is clearly insufficient. You can do it with number plugging OR consider the following: both x and y are positive means that point (x,y) is in the I quadrant. \(2x-2y=1\) --> \(y=x-\frac{1}{2}\). We know it's an equation of a line and basically the question asks whether this line (all (x,y) points of this line) is only in I quadrant. This line for sure passes I quadrant (for example, x = 1.5 and y = 1) but it cannot entirely be only in I quadrant, so there must be some (x, y) points whose coordinates are not both positive. Not sufficient.


(2) \(\frac{x}{y}>1\) --> x and y have the same sign. But we don't know whether they are both positive or both negative. Not sufficient.


(1)+(2) Again it can be done with different approaches. You should just find the one which is the less time-consuming and comfortable for you personally. One of the approaches:

From (1): \(2x-2y=1\), so \(x=y+\frac{1}{2}\)

From (2): \(\frac{x}{y}>1\);

Substitute x into (2): \(\frac{y + \frac{1}{2}}{y}>1\);

\(1 + \frac{1}{2y}>1\);

\(\frac{1}{2y}>0\);

\(y > 0\). \(y\) is positive. Thus, \(x=y+\frac{1}{2}=positive+positive=positive\). So, \(x\) is positive too. Sufficient.


Answer: C.


You can also check GRAPHIC APPROACH below.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49320
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 05 Apr 2018, 17:11
1
1
Are x and y both positive?


GRAPHIC APPROACH.

Notice that the question is basically asks whether the point (x, y) is in the first quadrant.


(1) \(2x - 2y = 1\). Draw line \(y=x-\frac{1}{2}\):

Image

Not sufficient.


(2) \(\frac{x}{y} > 1\). Draw line \(\frac{x}{y}=1\). The solutions is the green region:

Image

Not sufficient.


(1)+(2) Intersection is the portion of the blue line which lies in the first quadrant. Sufficient.

Answer: C.

Attachment:
graph.png
graph.png [ 6.13 KiB | Viewed 4159 times ]

Attachment:
graph %282%29.png
graph %282%29.png [ 5.95 KiB | Viewed 4161 times ]

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Community Reply
Manager
Manager
avatar
Joined: 25 Jun 2012
Posts: 64
Location: India
WE: General Management (Energy and Utilities)
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 16 Aug 2012, 09:35
6
30
I got it correct but took approx 2.5 minutes.

stmnt 1 : insufficient by plugging numbers
stmnt 2 :

x/y >1 => not suff as bot x and y can be -ve or both +ve.

combined :

from stmnt 1 we have

x=y+1/2 => x/y = 1+1/2y => suppose x/y is 2 as x/y>1 => 2=1+1/2y = y=1/2 henc x=1

both positive.

Ans C

Am I right in my approach?
General Discussion
Intern
Intern
avatar
Joined: 06 May 2010
Posts: 8
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 11 May 2010, 04:40
I'm still not clear why X and Y has to be positive when X/Y > 1. Can you please explain the way you combined taking both X and Y to be positive and also X and Y as negative. Since in either case X/Y will be > 1.

Thanks
-H
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49320
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 11 May 2010, 04:59
16
12
harikattamudi wrote:
I'm still not clear why X and Y has to be positive when X/Y > 1. Can you please explain the way you combined taking both X and Y to be positive and also X and Y as negative. Since in either case X/Y will be > 1.

Thanks
-H


From (2) \(\frac{x}{y}>1\), we can only deduce that x and y have the same sigh (either both positive or both negative).

When we consider two statement together:

From (1): \(2x-2y=1\) --> \(x=y+\frac{1}{2}\)

From (2): \(\frac{x}{y}>1\) --> \(\frac{x}{y}-1>0\) --> \(\frac{x-y}{y}>0\) --> substitute \(x\) from (1) --> \(\frac{y+\frac{1}{2}-y}{y}>0\)--> \(\frac{1}{2y}>0\) (we can drop 2 as it won't affect anything here and write as I wrote \(\frac{1}{y}>0\), but basically it's the same) --> \(\frac{1}{2y}>0\) means \(y\) is positive, and from (2) we know that if y is positive x must also be positive.

OR: as \(y\) is positive and as from (1) \(x=y+\frac{1}{2}\), \(x=positive+\frac{1}{2}=positive\), hence \(x\) is positive too.

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 17 Feb 2010
Posts: 10
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 24 Jun 2010, 21:03
1
Here is my confusion.
Here is how I approached the question
1. 2x-2y=1
so x-y=.5

now x=1, y=.5
or x=1/4, y=-1/4
so can't tell

2. x/y>1
x>y so again can't tell.

Now if we combine both
still the options x=1, x=.5 is true
and so is the option x=1/4, y=-1/4 true

So can't tell hence E. I know this is not the correct answer but what am I missing?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49320
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 25 Jun 2010, 04:18
9
3
sam2010 wrote:
Here is my confusion.
Here is how I approached the question
1. 2x-2y=1
so x-y=.5

now x=1, y=.5
or x=1/4, y=-1/4
so can't tell

2. x/y>1
x>y so again can't tell.


Now if we combine both
still the options x=1, x=.5 is true
and so is the option x=1/4, y=-1/4 true

So can't tell hence E. I know this is not the correct answer but what am I missing?


Problem with your solution is that the red part is not correct.

\(\frac{x}{y}>1\) does not mean that \(x>y\). If both x and y are positive, then \(x>y\), BUT if both are negative, then \(x<y\).

From (2) \(\frac{x}{y}>1\), we can only deduce that x and y have the same sigh (either both positive or both negative).
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
User avatar
Joined: 16 Jul 2010
Posts: 18
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 20 Jul 2010, 12:41
16
I found this one easiest to solve by drawing a graph. Clearly 1) and 2) alone are not sufficient as discussed, so what remains to be seen is if 2) adds enough information to 1) to determine if both x and y are positive.

Drawing a quick graph of the line y=x-1/2 we find that the x-intercept of the line is (0.5,0) and the y-intercept is (0,-0.5). From this graph we can clearly see that we don't need to worry about anything in the 4th quadrant (+x/-y is not >1) or the 3rd quadrant (|x|<|y|, therefore x/y is not >1). All that is left is the 1st quadrant, in which x and y are both positive.

Sufficient.
_________________

If you find my posts useful, please award me some Kudos!

Manager
Manager
User avatar
Joined: 17 Aug 2010
Posts: 51
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 30 Sep 2010, 00:48
2
Manbehindthecurtain wrote:
Are x and Y both positive?

1) 2X-2Y = 1
2) (x/y) > 1

I guessed and got it right with a 50/50 guess at the end.


What I have done here is this

1) 2x - 2y = 1
hence x - y = \frac{1}{2} {Dividing both side by 2}
In sufficient

2) [fraction]x > y[/fraction] Alone in sufficient

When (1) + (2) We can say that if X is greater than y than x-y will yield a positive result.

Please correct me if I am wrong
_________________

I don't want kudos.. I want to see smile on your face if I am able to help you.. which is priceless.

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49320
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 30 Sep 2010, 01:03
4
3
zerotoinfinite2006 wrote:
Manbehindthecurtain wrote:
Are x and Y both positive?

1) 2X-2Y = 1
2) (x/y) > 1

I guessed and got it right with a 50/50 guess at the end.


What I have done here is this

1) 2x - 2y = 1
hence x - y = \frac{1}{2} {Dividing both side by 2}
In sufficient

2) x > y Alone in sufficient

When (1) + (2) We can say that if X is greater than y than x-y will yield a positive result.

Please correct me if I am wrong


First of all: the question is "are x and Y both positive?" not whether "x-y will yield a positive result".

Next, the red part is not correct.

\(\frac{x}{y}>1\) does not mean that \(x>y\). If both \(x\) and \(y\) are positive, then \(x>y\), BUT if both are negative, then \(x<y\). What you are actually doing when writing \(x>y\) from \(\frac{x}{y}>1\) is multiplying both parts of inequality by \(y\): never multiply (or reduce) an inequality by variable (or by an expression with variable) if you don't know the sign of it or are not certain that variable (or expression with variable) doesn't equal to zero.

So from (2) \(\frac{x}{y}>1\), we can only deduce that \(x\) and \(y\) have the same sigh (either both positive or both negative).

See the complete solution of this problem in my previous post.

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Retired Moderator
avatar
B
Joined: 16 Nov 2010
Posts: 1451
Location: United States (IN)
Concentration: Strategy, Technology
Premium Member Reviews Badge
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 13 Mar 2011, 19:11
4
1 is not suff, x = 0, y = -1/2

2 is not suff,x and y can be both -ve

Combining both :

x - y = 1/2

and (x - y)/y > 0

so 1/2/y > 0 => y is +ve and because x - y is +ve, x is +ve as well.

So answer is C.
_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

GMAT Club Premium Membership - big benefits and savings

Manager
Manager
avatar
Joined: 12 Oct 2011
Posts: 209
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 04 Jan 2012, 00:28
6
C is the answer.
Question: Is x > 0 AND y > 0?

Statement 1: 2x - 2y = 1 => 2(x - y) = 1 => x - y = 1/2
This just tells us that the difference is positive. But this can be true for cases when both x and y are positive, and when both x and y are negative.
For instance, x = 1.5, y = 1 => x - y = 0.5; also, x = -1, y = -1.5 => x - y = 0.5. Thus, INSUFFICIENT.

Statement 2: x/y > 1
This just tells us that x and y have the same sign. That is, both are positive or both are negative. INSUFFICIENT.

Combining these statements, we can use the same numbers used in Statement 1 to find out that both the cases together do not work for negative numbers.
For instance, x = -1, y = -1.5 => x - y = 0.5. However, x/y < 1. This violates statement 2.

Thus, the combination of the given statements tells us that x and y both have to be positive. => x > 0 AND y > 0. SUFFICIENT.
_________________

Consider KUDOS if you feel the effort's worth it

VP
VP
User avatar
S
Status: Top MBA Admissions Consultant
Joined: 24 Jul 2011
Posts: 1486
GMAT 1: 780 Q51 V48
GRE 1: Q800 V740
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 12 May 2012, 01:36
5
Statement (1): x-y = 1/2. We can have x=1,y=1/2. Can also have x=0,y=-1/2. Insufficient.
Statement (2): x/y>1. We can have x=3,y=2. Can also have x=-3,y=-2. Insufficient.

Combining both,
(y+1/2)/y > 1
=> 1/2y>0
=> y>0

Also as x/y>1, x must be>0. Sufficient.

C it is.
_________________

GyanOne | Top MBA Rankings and MBA Admissions Blog

Top MBA Admissions Consulting | Top MiM Admissions Consulting

Premium MBA Essay Review|Best MBA Interview Preparation|Exclusive GMAT coaching

Get a FREE Detailed MBA Profile Evaluation | Call us now +91 98998 31738

Manager
Manager
avatar
Joined: 07 Sep 2011
Posts: 68
GMAT 1: 660 Q41 V40
GMAT 2: 720 Q49 V39
WE: Analyst (Mutual Funds and Brokerage)
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 24 Aug 2012, 13:30
21
17
Are x and y both positive?

1) 2x-2y=1
2(x-y)=1
x-y=1/2
-->3/4-1/4=1/2....YES
-->-1/4-(-3/4)=1/2...NO
INSUFFICIENT

2) x/y>1
This just means that x and y have the same sign. They're either both positive or both negative.
INSUFFICIENT

1&2)
x=1/2+y

(1/2+y)/y>1
y/2 + 1 > 1
y/2 > 0 which means that Y is greater than 0. And since both x and y have the same sign, both x and y are Positive. YES.

Answer is C.
Senior Manager
Senior Manager
User avatar
Joined: 13 Aug 2012
Posts: 436
Concentration: Marketing, Finance
GPA: 3.23
GMAT ToolKit User
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 17 Jan 2013, 04:55
2
3
Manbehindthecurtain wrote:
Are x and y both positive?

(1) 2x-2y = 1
(2) x/y > 1


1. x-y = 1/2
This means that the distance between x and y is 1/2 unit and that x is greater than y.
But x and y could be positive such as x=5 and y=4.5, OR
x and y could be both negative such as x=-4 and y=-4.5

INSUFFICIENT.

2. x/y > 1
This shows that x and y must be positive meaning they are either both (+) or both (-).
ex) x/y = 5/2 OR x/y = -5/-2 = 5/2 still > 1

INSUFFICIENT.

Combine.
Let x = 5 and y=9/2: 5/(9/2) = 10/9 > 1 - This means when x and y are both positive it could be a solution to x/y > 1
Let x = -4 and y=-9/2: -4/(-9/2) = 8/9 < 1 - This means when x and y are negative it could not be a solution to x/y > 1

Thus, SUFFICIENT that x and y are both positive.

Answer: C
_________________

Impossible is nothing to God.

Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 281
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 14 Sep 2013, 22:23
Hello Bunuel,
Request you to please provide your comments on the doubt posted here-

Usually, whenever I see combining an inequality and equation, I substitute the value of one of the variable in the inequality and then analyze the effect.
So, going by that approach;

x-y=1/2 ---(1)
x/y>1 --(2)
Substituting the value of x in equation(2)

(y+1/2)/y>1

Lets assume that y is positive-

(y+1/2) > y

1/2>0 --This means that our assumption is true since 1/2 is greater than Zero. Hence, y > 0

Now, Lets assume that y is negative-

Now, here I'm stuck, I know that multiplying by a negative number changes the sign of the inequality.
I'm sure that the sign will be changed but what would be the resulting equation. I mean, do we need to replace y with "-y" in the whole equation. Please clarify. Which of the following would be correct then

a) y+1/2 <y
b) y+1/2 < -y
c) -y+1/2 < -y

Please help.
Thanks
Verbal Forum Moderator
User avatar
Joined: 10 Oct 2012
Posts: 614
Premium Member
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 14 Sep 2013, 22:39
2
imhimanshu wrote:
Hello Bunuel,
Request you to please provide your comments on the doubt posted here-

Usually, whenever I see combining an inequality and equation, I substitute the value of one of the variable in the inequality and then analyze the effect.
So, going by that approach;

x-y=1/2 ---(1)
x/y>1 --(2)
Substituting the value of x in equation(2)

(y+1/2)/y>1

Lets assume that y is positive-

(y+1/2) > y

1/2>0 --This means that our assumption is true since 1/2 is greater than Zero. Hence, y > 0

Now, Lets assume that y is negative-

Now, here I'm stuck, I know that multiplying by a negative number changes the sign of the inequality.
I'm sure that the sign will be changed but what would be the resulting equation. I mean, do we need to replace y with "-y" in the whole equation. Please clarify. Which of the following would be correct then

a) y+1/2 <y
b) y+1/2 < -y
c) -y+1/2 < -y

Please help.
Thanks


Refer to the highlighted portion : Actually you don't have to take 2 cases at this point: The expression you have is : \(\frac{y+0.5}{y}>1 \to 1+\frac{0.5}{y}>1 \to \frac{1}{y}>0\)--> Hence, y>0.

As for your doubt, if y is negative, we cross-multiply it and get : \(y+0.5<y \to 0>0.5\), which is absurd.

If y is negative, then -y would be positive, and for multiplying a positive quantity, you don't need to flip signs. So , yes expression a is correct.
_________________

All that is equal and not-Deep Dive In-equality

Hit and Trial for Integral Solutions

Intern
Intern
avatar
Joined: 23 Oct 2012
Posts: 28
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1  [#permalink]

Show Tags

New post 03 Dec 2013, 23:07
4
St 1) 2x-2y = 1 => 2 (x-y) = 1 => x-y =1/2 => all this tells us is that x > y (could be positive or negative) == hence INSUFF

St 2) x/y > 1 => we don't know if y is (+) or (-) . So we have two cases:

if y positive, then x>y; if y negative, then x<y (again INSUFF)

Combining 1) and 2) we get x>y (from 1) ...which means y is positive (from 2)

Hence, if y is positive, and x >y, then x is also positive. SUFF!!

Hope this was reasoned properly.
GMAT Club Bot
Re: Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1 &nbs [#permalink] 03 Dec 2013, 23:07

Go to page    1   2    Next  [ 38 posts ] 

Display posts from previous: Sort by

Are x and y both positive? (1) 2x - 2y = 1 (2) x/y > 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.