Note: This questions is related to the article on

Common Errors in GeometryKindly go through the article once, before solving the question or going through the solution.

Official SolutionGiven: ABCD is a quadrilateral.

Analysing statement 1:The first statements states :

The diagonals bisect each other at \(90^o\) and they are equal. From the above statement, we can conclude that

the quadrilateral is a square. But to find the area of the quadrilateral we need the

length of each side, which is not given.

Hence statement 1 is

not sufficient to answer the question.

Analysing statement 2:The length of each diagonal is 10 cm.

Using only the 2nd statement, we cannot find the area of the quadrilateral, since we don't know what kind of quadrilateral it is.

Hence statement 2 is

not sufficient to answer the question.

Combining statement 1 and 2:Using both the statements, we can conclude that the quadrilateral is a square and the length of it's diagonal is 10cm.

Therefore, AB = BC = CD = AD

AC = BD = 10 (diagonals)

Since ABCD is a square angle ABC = 9\(0^o\), therefore we can infer that the diagonal(AC) is the hypotenuse and the sides AB and BC are the perpendicular and base.

Hence we can write A\(B^2\) + B\(C^2\) = A\(C^2\)

2A\(B^2\) = 1\(0^2\).............(i)

And we know the area of the square = (side\()^2\) = A\(B^2\)

We can find the value of AB from (i) and hence we can find the area of the square!

Hence

combining both the statements we can find out the answer.

Correct Option : CThanks,

Saquib

Quant Expert

e-GMAT
_________________

Register for free sessions

Number Properties | Algebra |Quant Workshop

Success Stories

Guillermo's Success Story | Carrie's Success Story

Ace GMAT quant

Articles and Question to reach Q51 | Question of the week

Must Read Articles

Number Properties – Even Odd | LCM GCD

Word Problems – Percentage 1 | Percentage 2 | Time and Work 1 | Time and Work 2 | Time, Speed and Distance 1 | Time, Speed and Distance 2

Advanced Topics- Permutation and Combination 1 | Permutation and Combination 2 | Permutation and Combination 3 | Probability

Geometry- Triangles 1 | Triangles 2 | Triangles 3 | Common Mistakes in Geometry

Algebra- Wavy line

Practice Questions

Number Properties 1 | Number Properties 2 | Algebra 1 | Geometry | Prime Numbers | Absolute value equations | Sets

| '4 out of Top 5' Instructors on gmatclub | 70 point improvement guarantee | www.e-gmat.com