Bunuel
Consider a function f satisfying \(f(x + y) = f(x)f(y)\) where x, y are positive integers, and
\(f(1) = 2\). If \(f(a + 1) + f(a + 2) + … + f(a + n) = 16(2^n − 1)\) then \(a\) is equal to
A. 1
B. 2
C. 3
D. 4
E. 5
Are You Up For the Challenge: 700 Level Questions\(f(x + y) = f(x)f(y)\)
i.e. \(f(a + 1) = f(a)f(1) = 2f(a)\)
i.e. \(f(a + 2) = f[(a +1)+ 1] = f(a+1)f(1) = 4f(a) = 2^2f(a)\)
i.e. \(f(a + 3) = f[(a +2)+ 1] = f(a+2)f(1) = 8f(a) = 2^3f(a)\)
and so on
\(f(a + 1) + f(a + 2) + … + f(a + n) = 2f(a)*[1+2+2^2+2^3+---+2^n] = 16(2^n − 1)\)
Sum of n terms of a Geometric Progression
\(a+ar+ar^2+ar^3+---+ar^n = \frac{a(r^n-1)}{(r-1)}\)
i.e. \(2f(a)*[1+2+2^2+2^3+---+2^n] = 2f(a)*[1*(2^n-1)/(2-1) = 16(2^n − 1)\)
i.e. \(2f(a) = 16\)i.e. \(f(a) = 8\)Also, \(f(2) = f(1)*(f1) = 2*2 = 4\)
\(f(3) = f(2)*(f1) = 4*2 = 8\)
i.e. \(f(3) = f(a)\)
i.e. a = 3
Answer: Option C