Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

For any positive integer n, the length of n is defined as [#permalink]

Show Tags

29 Jan 2012, 17:15

4

This post received KUDOS

32

This post was BOOKMARKED

00:00

A

B

C

D

E

Difficulty:

45% (medium)

Question Stats:

63% (01:46) correct
37% (00:57) wrong based on 817 sessions

HideShow timer Statistics

For any positive integer n, the length of n is defined as number of prime factors whose product is n, For example, the length of 75 is 3, since 75=3*5*5. How many two-digit positive integers have length 6?

A. 0 B. 1 C. 2 D. 3 E. 4

I need to understand the concept behind solving this question please.

For any positive integer n, the length of n is defined as number of prime factors whose product is n, For example, the length of 75 is 3, since 75=3*5*5. How many two-digit positive integers have length 6?

A. 0 B. 1 C. 2 D. 3 E. 4

I need to understand the concept behind solving this question please.

Basically the length of the integer is the sum of the powers of its prime factors.

Length of six means that the sum of the powers of primes of the two-digit integer must be 6. First we can conclude that 5 can not be a factor of this integer as the smallest integer with the length of six that has 5 as prime factor is 2^5*5=160 (length=5+1=6), not a two-digit integer.

The above means that the primes of the two-digit integers we are looking for can be only 2 and/or 3. \(n=2^p*3^q\), \(p+q=6\).

Let's start with the highest value of \(p\): \(n=2^6*3^0=64\) (length=6+0=6); \(n=2^5*3^1=96\) (length=5+1=6);

\(n=2^4*3^2=144\) (length=4+2=6) not good as 144 is a three digit integer.

Re: For any positive integer n, the length of n is defined as [#permalink]

Show Tags

08 Mar 2013, 16:13

1

This post received KUDOS

Try the smallest possible value first: In this case it is 2^6 which equals 64.

If we replace the last 2 with 3, then we have 2^5*3 = 96

From here we can positively assume that any other number will have more than 2 digits. So the answer is (C) 2 numbers that have length 6 and are only 2 digits.

Re: For any positive integer n, the length of n is defined as [#permalink]

Show Tags

09 Mar 2014, 01:18

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: For any positive integer n, the length of n is defined as [#permalink]

Show Tags

20 Apr 2014, 00:45

Length of a number = Total number of prime factors of the number.

Any composite number can be represented as a product of prime numbers as shown below:

N= 2^x * 3^y * 5^z * 7^a ...so on

Since our requirement is a two digit number, we shall raise maximum power for smallest prime factor.

N= 2^6 = 64 has Length 6

N= 2^5 * 3 = 96 has length 6

N=2^4 * 3^2 = 144 is a three digit number and so on the other combinations would reveal 3 digit numbers.

Hence there are only 2 numbers
_________________

Rgds, TGC! _____________________________________________________________________ I Assisted You => KUDOS Please _____________________________________________________________________________

Re: For any positive integer n, the length of n is defined as [#permalink]

Show Tags

30 May 2015, 03:39

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

Re: For any positive integer n, the length of n is defined as [#permalink]

Show Tags

03 Jun 2016, 13:38

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

For any positive integer n, the length of n is defined as number of prime factors whose product is n, For example, the length of 75 is 3, since 75=3*5*5. How many two-digit positive integers have length 6?

A. 0 B. 1 C. 2 D. 3 E. 4

I need to understand the concept behind solving this question please.

For the length to be 6, the number of prime factors should be maximum. Hence we need to use maximum 2's

The numbers can be 2^6 = 64 and 2^5*3 = 96 For any other number less than 100, the length will be less than 6

For any positive integer n, the length of n is defined as number of prime factors whose product is n, For example, the length of 75 is 3, since 75=3*5*5. How many two-digit positive integers have length 6?

A. 0 B. 1 C. 2 D. 3 E. 4

We need to determine how many 2-digit integers have a length of 6, or in other words how many 2-digit integers are made up of 6 prime factors. Let’s start with the smallest possible numbers:

2^6 = 64 (has a length of 6)

2^5 x 3^1 = 96 (has a length of 6)

Since 2^4 x 3^2 = 144 and 2^5 x 5^1 = 160 are greater than 99, there are no more 2-digit numbers that have a length of 6.

Answer: C
_________________

Jeffery Miller Head of GMAT Instruction

GMAT Quant Self-Study Course 500+ lessons 3000+ practice problems 800+ HD solutions

For any positive integer n, the length of n is defined as [#permalink]

Show Tags

26 Mar 2017, 01:26

For any positive integer n, the length of n is defined as number of prime factors whose product is n, For example, the length of 75 is 3, since 75=3*5*5. How many two-digit positive integers have length 6?

A. 0 B. 1 C. 2 D. 3 E. 4

So it is evident that the length can only include 2 and 3 also when we try with 2 we find that length longer than 6 is not possible to be a 2 digit number.

and only one 2 can be replaced by 3 and we get 96,

this can be solved by hit and trial by starting from the lower prime and then moving up.

64 and 96 are the only two numbers possible to have length 6.

There’s something in Pacific North West that you cannot find anywhere else. The atmosphere and scenic nature are next to none, with mountains on one side and ocean on...

This month I got selected by Stanford GSB to be included in “Best & Brightest, Class of 2017” by Poets & Quants. Besides feeling honored for being part of...

Joe Navarro is an ex FBI agent who was a founding member of the FBI’s Behavioural Analysis Program. He was a body language expert who he used his ability to successfully...