It is currently 21 Jan 2018, 10:50

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

Four identical circles are drawn in a square such that each

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

3 KUDOS received
Intern
Intern
avatar
Joined: 17 May 2013
Posts: 7

Kudos [?]: 16 [3], given: 7

Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 24 Jul 2013, 10:14
3
This post received
KUDOS
6
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

73% (01:23) correct 27% (01:43) wrong based on 342 sessions

HideShow timer Statistics

Four identical circles are drawn in a square such that each circle touches two sides of the square and two other circles (as shown in the figure below). If the side of the square is of length 20 cm, what is the area of the shaded region?
Attachment:
File comment: This is the figure for the question.
GeometryPost12Ques2.jpg
GeometryPost12Ques2.jpg [ 7.89 KiB | Viewed 21152 times ]


(A) 400 – 100π
(B) 200 – 50π
(C) 100 – 25π
(D) 8π
(E) 4π

Could not understand the solution, need help.
[Reveal] Spoiler: OA

Last edited by Bunuel on 24 Jul 2013, 10:17, edited 1 time in total.
Edited the question.

Kudos [?]: 16 [3], given: 7

Expert Post
5 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43348

Kudos [?]: 139695 [5], given: 12794

Re: Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 24 Jul 2013, 10:35
5
This post received
KUDOS
Expert's post
2
This post was
BOOKMARKED
genuinebot85 wrote:
Four identical circles are drawn in a square such that each circle touches two sides of the square and two other circles (as shown in the figure below). If the side of the square is of length 20 cm, what is the area of the shaded region?
Image

(A) 400 – 100π
(B) 200 – 50π
(C) 100 – 25π
(D) 8π
(E) 4π

Could not understand the solution, need help.


Look at the image below:
Attachment:
Untitled.png
Untitled.png [ 13.57 KiB | Viewed 16234 times ]
The areas of regions with red dots are equal. So, we have 16 equal regions and we need the area of four of them. The area of all 16 is equal to the area of the square minus the area of four circles.

The area of the square = \(20^2 = 400\).
The area of four circles = \(4*(\pi{r^2})=4*(\pi{5^2})=100\pi\) (the diameter of each circle is 1/2 of the side, thus the radius of each circle is 1/4 of the side).

The area of 16 regions = \(400-100\pi\).
The area of shaded region (4 regions with red dots) = \(\frac{400-100\pi}{4}=100-25\pi\).

Answer: C.

Else you could simply find the area of the smaller square (1/4 of the bigger) and subtract the area of the circle. This way you'd also get the area of 4 regions with red dots.

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139695 [5], given: 12794

1 KUDOS received
Intern
Intern
avatar
B
Joined: 26 Jun 2014
Posts: 15

Kudos [?]: 3 [1], given: 205

Re: Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 05 Aug 2014, 08:59
1
This post received
KUDOS
genuinebot85 wrote:
Four identical circles are drawn in a square such that each circle touches two sides of the square and two other circles (as shown in the figure below). If the side of the square is of length 20 cm, what is the area of the shaded region?
Attachment:
GeometryPost12Ques2.jpg


(A) 400 – 100π
(B) 200 – 50π
(C) 100 – 25π
(D) 8π
(E) 4π

Could not understand the solution, need help.


You can draw a second square, with vertices at the centers of the circles. Then that square has sides of 10 units, and the quarter circles have total area of 25*pi.

Kudos [?]: 3 [1], given: 205

2 KUDOS received
SVP
SVP
User avatar
Status: The Best Or Nothing
Joined: 27 Dec 2012
Posts: 1844

Kudos [?]: 2866 [2], given: 193

Location: India
Concentration: General Management, Technology
WE: Information Technology (Computer Software)
Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 05 Aug 2014, 20:03
2
This post received
KUDOS
The shaded region in the problem is equal to the shaded region in the modified diagram (in red) as shown in diagram below

Area of square\(= 10^2 = 100\)

Area of Circle \(= \pi (\frac{10}{2})^2 = 25\pi\)

Area of red shaded region\(= 100 - 25\pi\)

Answer = C
Attachments

GeometryPost12Ques2.jpg
GeometryPost12Ques2.jpg [ 9.25 KiB | Viewed 15284 times ]


_________________

Kindly press "+1 Kudos" to appreciate :)

Kudos [?]: 2866 [2], given: 193

Intern
Intern
avatar
Joined: 17 Apr 2015
Posts: 5

Kudos [?]: [0], given: 53

Re: Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 18 Apr 2015, 04:32
Hi everyone, I got this one right on an educated guess, having successfully whittled down the options to C or D, but I'm still a little hazy on why we ultimately end up dividing by four instead of two (ie 400 - 100pi divided by 4 = correct answer C as opposed to 400 - 100pi divided by 2 which would yield answer choice B). New to this so I hope Im not confusing anyone! Thanks in advance!

Kudos [?]: [0], given: 53

Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43348

Kudos [?]: 139695 [0], given: 12794

Re: Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 18 Apr 2015, 05:19
MeliMeds wrote:
Hi everyone, I got this one right on an educated guess, having successfully whittled down the options to C or D, but I'm still a little hazy on why we ultimately end up dividing by four instead of two (ie 400 - 100pi divided by 4 = correct answer C as opposed to 400 - 100pi divided by 2 which would yield answer choice B). New to this so I hope Im not confusing anyone! Thanks in advance!


\(400-100\pi\) is the area of 16 regions.

We need the area of 4 shaded region, thus we need to divide \(400-100\pi\) by 4: \(\frac{400-100\pi}{4}=100-25\pi\).

Hope it's clear
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139695 [0], given: 12794

Intern
Intern
avatar
Joined: 17 Apr 2015
Posts: 5

Kudos [?]: [0], given: 53

Re: Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 18 Apr 2015, 05:31
Bunuel wrote:
MeliMeds wrote:
Hi everyone, I got this one right on an educated guess, having successfully whittled down the options to C or D, but I'm still a little hazy on why we ultimately end up dividing by four instead of two (ie 400 - 100pi divided by 4 = correct answer C as opposed to 400 - 100pi divided by 2 which would yield answer choice B). New to this so I hope Im not confusing anyone! Thanks in advance!


\(400-100\pi\) is the area of 16 regions.

We need the area of 4 shaded region, thus we need to divide \(400-100\pi\) by 4: \(\frac{400-100\pi}{4}=100-25\pi\).

Hope it's clear



Thanks! I actually pondered over it some more and found that my brain more easily accepted the version of splitting the figure into four even squares... ie the area of one square minus the area of its internal circle divided by 4 would give the area of one of the four middle segments, then multiplying that by four equates the total central portion (which is the same as multiplying area of one square minus its internal circle by one since the fours cancel out).. I know both strategies get you to the same answer but I guess that's the beauty and diversity of perspective in learning....some people just see things in certain ways that others see in others toward the same net result....THANKS ALL THE SAME...it helps a lot to reason things out!

Kudos [?]: [0], given: 53

1 KUDOS received
Senior Manager
Senior Manager
avatar
Joined: 27 Dec 2013
Posts: 299

Kudos [?]: 43 [1], given: 113

Re: Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 18 Apr 2015, 06:52
1
This post received
KUDOS
Hi All,

Another way to solve the question, imagine a square joining the centres of 4 circles. See picture below.

You know the radius=5. So the area of new square= 100.

You have to substract the 4 sectors. The area of sector= PI R*R*angle/360= PI* 5 *5 /4 = 25 PI/4 (multiplying by four, because we have 4 sectors)

=25PI. ( Angle subtended at the centre=90 and hence we took the angle 90)

So area of shaded region = 100-25PI.


genuinebot85 wrote:
Four identical circles are drawn in a square such that each circle touches two sides of the square and two other circles (as shown in the figure below). If the side of the square is of length 20 cm, what is the area of the shaded region?
Attachment:
The attachment GeometryPost12Ques2.jpg is no longer available


(A) 400 – 100π
(B) 200 – 50π
(C) 100 – 25π
(D) 8π
(E) 4π

Could not understand the solution, need help.

Attachments

GeometryPost12Ques2.jpg
GeometryPost12Ques2.jpg [ 8.75 KiB | Viewed 14491 times ]


_________________

Kudos to you, for helping me with some KUDOS.

Kudos [?]: 43 [1], given: 113

Board of Directors
User avatar
P
Joined: 17 Jul 2014
Posts: 2719

Kudos [?]: 463 [0], given: 211

Location: United States (IL)
Concentration: Finance, Economics
GMAT 1: 650 Q49 V30
GPA: 3.92
WE: General Management (Transportation)
GMAT ToolKit User Premium Member Reviews Badge
Re: Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 27 Apr 2016, 19:18
genuinebot85 wrote:
Four identical circles are drawn in a square such that each circle touches two sides of the square and two other circles (as shown in the figure below). If the side of the square is of length 20 cm, what is the area of the shaded region?
Attachment:
GeometryPost12Ques2.jpg


(A) 400 – 100π
(B) 200 – 50π
(C) 100 – 25π
(D) 8π
(E) 4π

Could not understand the solution, need help.


we can see that regions not shaded can be "glued" to form 4 identical forms to the center one (shaded region)
area of square = 20^2 = 400
area of 1 circle = 25pi => 4 circles = 100pi.
now..
400-100pi = area of everything except the circles.
since we can imaginably draw 4 identical to central one figures, we divide everything by 4:
100-25pi.

C

Kudos [?]: 463 [0], given: 211

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14201

Kudos [?]: 291 [0], given: 0

Premium Member
Re: Four identical circles are drawn in a square such that each [#permalink]

Show Tags

New post 16 Nov 2017, 05:26
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 291 [0], given: 0

Re: Four identical circles are drawn in a square such that each   [#permalink] 16 Nov 2017, 05:26
Display posts from previous: Sort by

Four identical circles are drawn in a square such that each

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.