GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 18 Oct 2019, 01:42 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

Intern  B
Joined: 30 Nov 2013
Posts: 18
Location: India
Concentration: Finance, General Management
GMAT 1: 640 Q50 V25 GPA: 3.5
WE: Information Technology (Computer Software)
If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

3
28 00:00

Difficulty:   95% (hard)

Question Stats: 40% (01:46) correct 60% (01:42) wrong based on 532 sessions

HideShow timer Statistics

If $$(a^{(\frac{1}{2})}*b^{(\frac{1}{3})})^6=2000$$, what is the value of ab?

(1) a = 5
(2) a and b are positive integers

_________________
Kudos is the best way to say Thank you.
Believe in yourself! Practice more and good score in GMAT is for sure Originally posted by madhavsrinivas on 23 Dec 2013, 11:18.
Last edited by Bunuel on 17 May 2016, 21:48, edited 2 times in total.
Edited the question.
Manager  Joined: 19 Apr 2013
Posts: 68
Concentration: Entrepreneurship, Finance
GMAT Date: 06-05-2015
GPA: 3.88
WE: Programming (Computer Software)
Re: If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

4
1
If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?

1) a = 5
2) a and b are positive integers

A) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked
B) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked
C) Both statements (1) and (2) TOGETHER are sufficient to answer the question asked; but NEITHER statement ALONE is sufficient
D) EACH statement ALONE is sufficient to answer the question asked
E) Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed

({a^1/2}*{b^1/3})^6=2000

==>a^3*b^2 = 2000

from statement 1 :

a = 5

125*b^2 = 2000

b^2 == 2000/125
b^2 == 16
b =4,-4

So ab will be 20,-20.

from statement 2

a,b are +ve

a^3*b^2 = 2000

this will be factorise in above only -- 125*16

so answer from this will be only 20.

So answer will be B.

Thanks
AB

+1 Kudos if you like and understand.

General Discussion
Intern  Joined: 05 Dec 2013
Posts: 13
Location: United States
GMAT 1: 770 Q51 V42 GPA: 3.53
Re: If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

shouldn't the answer be C, considering the fact that it hasn't been given that a & b are integers? there can be endless values of a&b satisfying the second statement.
Intern  B
Joined: 30 Nov 2013
Posts: 18
Location: India
Concentration: Finance, General Management
GMAT 1: 640 Q50 V25 GPA: 3.5
WE: Information Technology (Computer Software)
Re: If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

2
asethi100 wrote:
shouldn't the answer be C, considering the fact that it hasn't been given that a & b are integers? there can be endless values of a&b satisfying the second statement.

Hi asethi,

Simplifying the original equation gives us a^3 * b^2 = 2000
We can write 2000 as 125 * 16 or 1000 *2 or 40 * 50 etc etc.
But if you see statement 2, which says a and b are integers then only 125 and 16 can be expressed in the form of a^3 and b^2, i.e 5^3 and 4^2.
The other values such as 1000*2 or 40*50 can be expressed in the form of a^3 and b^2, but either of a and b or both, will not be of integer values.
So, if you consider statement 2 alone, you will get the answer straight away. I hope this helps ! _________________
Kudos is the best way to say Thank you.
Believe in yourself! Practice more and good score in GMAT is for sure Manager  B
Joined: 13 Dec 2013
Posts: 144
Location: United States (NY)
Concentration: General Management, International Business
Schools: Cambridge"19 (A)
GMAT 1: 710 Q46 V41 GMAT 2: 720 Q48 V40 GPA: 4
WE: Consulting (Consulting)
Re: If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

asethi100 wrote:
shouldn't the answer be C, considering the fact that it hasn't been given that a & b are integers? there can be endless values of a&b satisfying the second statement.

Hi asethi,

Simplifying the original equation gives us a^3 * b^2 = 2000
We can write 2000 as 125 * 16 or 1000 *2 or 40 * 50 etc etc.
But if you see statement 2, which says a and b are integers then only 125 and 16 can be expressed in the form of a^3 and b^2, i.e 5^3 and 4^2.
The other values such as 1000*2 or 40*50 can be expressed in the form of a^3 and b^2, but either of a and b or both, will not be of integer values.
So, if you consider statement 2 alone, you will get the answer straight away. I hope this helps ! This is helpful. Is there any way to concretely prove that only a and b can only take the values of 5 and 4 respectively?
GMAT Club Legend  V
Joined: 12 Sep 2015
Posts: 4007
Re: If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

Top Contributor
1
If $$(a^{(\frac{1}{2})}*b^{(\frac{1}{3})})^6=2000$$, what is the value of ab?

(1) a = 5
(2) a and b are positive integers

Target question: What is the value of ab?

Given: $$(a^{(\frac{1}{2})}*b^{(\frac{1}{3})})^6=2000$$
Simplify to get: (a³)(b²) = 2000

Statement 1: a = 5
Take (a³)(b²) = 2000 and replace a with 5 to get: (5³)(b²) = 2000
Simplify: (125)(b²) = 2000
Divide both sides by 125 to get: b² = 16
So, EITHER b = 4 OR b = -4
Case a: if b = 4, then ab = (5)(4) = 20
Case b: if b = -4, then ab = (5)(-4) = -20
Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT

Statement 2: a and b are positive integers
We're told that (a³)(b²) = 2000
We also know that 2000 = (5)(5)(5)(2)(2)(2)(2) = (5)(5)(5)(4)(4) = (5³)(4²)
Since we're told that a and b are positive integers, we can conclude that a = 5 and b = 4, which means ab = (5)(4) = 20
Since we can answer the target question with certainty, statement 2 is SUFFICIENT

Cheers,
Brent
_________________
Current Student B
Joined: 27 May 2015
Posts: 12
Location: Venezuela
GMAT 1: 720 Q49 V40 GPA: 3.76
If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

My approach, in case it helps:

Question stem: $$(a^{1/2}*b^{1/3})^6=2000$$

Simplify it first:

$${(a^{1/2})}^{6}*{(b^{1/3})}^{6}=2000 \rightarrow a^{3}*b^{2}=2000$$

Now do the prime factorization of $$2000$$ to see that $$2000=2^{4}*5^{3}$$, which we can transform, using exponent properties, to $$2000=4^{2}*5^{3}$$. Now we have an expression similar to that of the question stem. Therefore, $$a$$ should be $$5$$.

From here, we should pay attention to the odd/even nature of the exponents. For base $$5$$, the exponent is odd ($$3$$). Since $$2000$$ is positive and the exponent of base $$4$$ is even ($$2$$), we know that $$5$$ must be positive. However, since the exponent of $$4$$ is even, $$4$$ could actually be $$4$$ or $$-4$$. The output of $$-4^{2}$$ is the same as of $$4^{2}$$, which is $$16$$. Therefore, $$b$$ could be $$4$$ or $$-4$$.

So we must focus on the sign of that $$4$$, or in the problem's language, the sign of $$b$$.

Statement 1) $$a=5$$. We already knew this. Not sufficient.

Statement 2) $$a$$ and $$b$$ are positive integers. We know that $$a=5$$ and that $$b$$ is positive, so $$b$$ is $$4$$. From here, we know that $$a*b=20$$. Sufficient.

Hope this approach helps.
Intern  Joined: 10 Sep 2017
Posts: 5
If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

0 → see question
1 → $$a^3 * b^2 = 2000$$
2 → $$(ab)^2 * a = 2000$$
3 → $$(ab)^2 = 2000 / a$$

Statement #1: $$a = 5$$
From 3 → $$(ab)^2 = 2000 / 5 = 400$$
So $$ab = \sqrt{(400)} = ± 20$$, but GMAT doesn't like ± (unlike my grade school algebra teacher)
So Statement #1 is insufficient.

Statement #2: a and b are positive integers
From 3 → $$(ab)^2 = 2000 / a$$
So $$ab = \sqrt{(2000 / a)} = 2 * 2 * 5 * \sqrt{(5 / a)} → a = 5, b = 2 * 2$$ since both are integers > 0
So Statement #2 is sufficient

Since a = 5, can be determined from Statement #2 alone, I will answer B for BOOM
Manager  S
Joined: 24 Sep 2018
Posts: 137
Re: If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?  [#permalink]

Show Tags

Kardo wrote:
0 → see question
1 → $$a^3 * b^2 = 2000$$
2 → $$(ab)^2 * a = 2000$$
3 → $$(ab)^2 = 2000 / a$$

Statement #1: $$a = 5$$
From 3 → $$(ab)^2 = 2000 / 5 = 400$$
So $$ab = \sqrt{(400)} = ± 20$$, but GMAT doesn't like ± (unlike my grade school algebra teacher)
So Statement #1 is insufficient.

Statement #2: a and b are positive integers
From 3 → $$(ab)^2 = 2000 / a$$
So $$ab = \sqrt{(2000 / a)} = 2 * 2 * 5 * \sqrt{(5 / a)} → a = 5, b = 2 * 2$$ since both are integers > 0
So Statement #2 is sufficient

Since a = 5, can be determined from Statement #2 alone, I will answer B for BOOM

Another approach to the same question:

Solution:

Simplifying the equation in the stimulus yields

$$a^3b^2$$=2000

Quote:
Statement (1) by itself is insufficient. If a = 5, then $$5^3b^2=2000$$ or$$b^2=16$$.

Thus b could equal 4 or -4, yielding two possible values for ab.

Quote:
Statement (2) by itself is sufficient.

If we were to break 2000 down into prime factors, we would get that 2000 = $$5^3.2^4$$

Since $$2^4=4^2$$,

2000 can be rewritten as $$5^34^2$$

Thus, a = 5 and b = 4 and we can determine the value of ab.

_________________
Please award kudos, If this post helped you in someway.  Re: If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?   [#permalink] 02 Oct 2018, 10:50
Display posts from previous: Sort by

If ({a^1/2}*{b^1/3})^6=2000, what is the value of ab?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  