GMAT Changed on April 16th - Read about the latest changes here

It is currently 21 May 2018, 06:09

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Expert Post
5 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 45214
If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ? [#permalink]

Show Tags

New post 06 Nov 2014, 09:02
5
This post received
KUDOS
Expert's post
5
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

39% (01:23) correct 61% (01:24) wrong based on 349 sessions

HideShow timer Statistics

Tough and Tricky questions: Algebra.



If \(a^{\frac{2}{3}} - b^{\frac{2}{3}} = 12\), then \(\sqrt[3]{a} + \sqrt[3]{b} =\) ?

(1) \(\sqrt[3]{a} = \sqrt[3]{b} + 2\)

(2) a = 64

Kudos for a correct solution.
[Reveal] Spoiler: OA

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Intern
Intern
avatar
Joined: 27 Jul 2012
Posts: 25
GMAT ToolKit User
Re: If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ? [#permalink]

Show Tags

New post 06 Nov 2014, 13:39
Both are sufficient

statement 1: use a^2-b^2=(a+b)(a-b). Tis gives us answer 6.
Sufficient

Statement 2
Put 64 in first equation. that gives us b=8.
Put both a and b into final question and find answer as 6.
Sufficient
Intern
Intern
avatar
Joined: 19 Oct 2014
Posts: 8
GMAT ToolKit User
Re: If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ? [#permalink]

Show Tags

New post 08 Nov 2014, 23:14
1
This post was
BOOKMARKED
Given:
\(a^{2/3}-b^{2/3}= (a^{1/3}+b^{1/3})*(a^{1/3}-b^{1/3}) = 12\)

\(a^{1/3}+b^{1/3} = ?\)

Statement 1:

\((a^{1/3}-b^{1/3})=2\)

Therefore \(a^{1/3}+b^{1/3} = 6\)

Sufficient.

Statement 2:

a=64

This can be used to solve for b and hence is sufficient.

Answer : D

Kudos please! Mr Bunuel, the quant king!!
Expert Post
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 45214
Re: If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ? [#permalink]

Show Tags

New post 10 Nov 2014, 05:35
4 KUDOS received
Manager
Manager
User avatar
Joined: 21 Jan 2014
Posts: 62
WE: General Management (Non-Profit and Government)
GMAT ToolKit User
Re: If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ? [#permalink]

Show Tags

New post 10 Nov 2014, 05:55
4
This post received
KUDOS
1
This post was
BOOKMARKED
As per question : a^(2/3)-b^(2/3)=12........(1)

so we can break this in terms of a^2-b^2=(a+b)(a-b)
(a^1/3)^2-(b^1/3)^2 = (a^1/3 +b^1/3)(a^1/3 - b^1/3)=12 ......(2)

1) a^1/3 = b^1/3 +2
a^1/3 - b^1/3 =2
So inserting this value in equation (2) will solve this puzzle. SUFFICIENT

2) a=64
taking this value in equation (1)
64^2/3 - b^2/3=12
16 -12 =b^2/3
so b^2/3=4 and b^1/3=+-2.
this two different values for b^1/3 will create new puzzle rather solving it.INSUFFICIENT

Correct answer :A
Intern
Intern
avatar
Joined: 07 Mar 2014
Posts: 21
Re: If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ? [#permalink]

Show Tags

New post 14 Apr 2015, 04:16
for a=64
the sol for b = +/- 8. This gives two values of B, therefore insufficient.
1 KUDOS received
Senior Manager
Senior Manager
avatar
G
Joined: 02 Apr 2014
Posts: 485
GMAT 1: 700 Q50 V34
Re: If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ? [#permalink]

Show Tags

New post 08 Nov 2017, 14:00
1
This post received
KUDOS
1
This post was
BOOKMARKED
Answer (A)

\(a ^ {2/3} - b ^ {2/3} = 12\)

Let \(x = a ^ {1/3}, y = b ^ {1/3}\) => \(x ^ 2 - y ^ 2 = 12\) =>\((x + y)(x - y)\) = 12

Question :\(a ^ {1/3} + b ^ {1/3}\) = ? => \(x + y =\)?

Let us attack statements

Statement 1:

\(a ^ {1/3} = b ^ {1/3} + 2\) => \(x = y + 2\) => \(x - y = 2\)

we have \((x + y) (x - y) = 12\)
so \(x + y = 6\) -> sufficient

Statement 2:
\(a = 64\) => taking cube roots on both sides => \(a ^ {1/3}\) = 4 => \(x = 4\)

using, \(x ^ 2 - y ^ 2 = 12\) => \(4 ^ 2 - y ^ 2 = 12\)=> \(y ^ 2 = 4\)=>\(y = 2 or -2\)

so \(x + y = 4+2 = 6\) or \(x - y = 4-2 = 2\) => Not sufficient

Answer (A)
Re: If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ?   [#permalink] 08 Nov 2017, 14:00
Display posts from previous: Sort by

If a^{2/3} - b^{2/3} = 12, then \sqrt[3]{a} + \sqrt[3]{b} = ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.