Author 
Message 
TAGS:

Hide Tags

Director
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 539
Location: United Kingdom
Concentration: International Business, Strategy
GPA: 2.9
WE: Information Technology (Consulting)

If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
09 Jan 2012, 21:58
3
This post received KUDOS
18
This post was BOOKMARKED
Question Stats:
65% (01:55) correct
35% (01:16) wrong based on 603 sessions
HideShow timer Statistics
Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 36, 0.72, and 3.005 are terminating decimals. If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal? (1) a > c (2) b > d
Official Answer and Stats are available only to registered users. Register/ Login.
_________________
Best Regards, E.
MGMAT 1 > 530 MGMAT 2> 640 MGMAT 3 > 610 GMAT ==> 730



Manager
Joined: 18 Dec 2011
Posts: 106

Re: Terminating Decimal [#permalink]
Show Tags
09 Jan 2012, 23:16
IMO B, explanation:
p/q= 2^(ac)3^(bd)/ 5^e
For p/q to be a terminating decimal, b should be greater than or equal to 0, hence b greater than d ie 2 is sufficient.



Intern
Joined: 07 Jan 2012
Posts: 7
Location: United States
WE: Marketing (Other)

Re: Terminating Decimal [#permalink]
Show Tags
09 Jan 2012, 23:32
1
This post received KUDOS
As I understand, in order to be a nonterminating decimal we should be able to convert a number into X/99 format. If b>d then there is no way we can get 99 in the denominator and hence it will always be a terminating decimal. Thus, B is an answer.



Math Expert
Joined: 02 Sep 2009
Posts: 39719

Re: Terminating Decimal [#permalink]
Show Tags
13 Jan 2012, 16:36
17
This post received KUDOS
Expert's post
3
This post was BOOKMARKED
enigma123 wrote: If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal? (1) a > c (2) b > d
Any idea what is the concept behind this question to get a answer B? Theory:Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are nonnegative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^3\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\). Note that if denominator already has only 2s and/or 5s then it doesn't matter whether the fraction is reduced or not. For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal. We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced. BACK TO THE ORIGINAL QUESTION: If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?Question: is \(\frac{2^a*3^b}{2^c*3^d*5^e}\) a terminating decimal? The question basically asks whether we cans reduce 3^d in the denominator so to have only powers of 2 and 5 left, which can be rephrased is b (the power of 3 in the nominator) greater than or equal to d (the power of 3 in the denominator): is b>=d? (1) a > c. Not sufficient. (2) b > d. Sufficient. Answer: B. Hope it helps.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Director
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 539
Location: United Kingdom
Concentration: International Business, Strategy
GPA: 2.9
WE: Information Technology (Consulting)

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
16 Jan 2012, 16:39
1
This post received KUDOS
Bunuel  you are a LEGEND. Many thanks for the lovely explanation.
_________________
Best Regards, E.
MGMAT 1 > 530 MGMAT 2> 640 MGMAT 3 > 610 GMAT ==> 730



Intern
Joined: 18 Jun 2012
Posts: 39

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
28 Jul 2012, 05:34
@Bunuel
What if e=0 ? Will it be a terminating decimal ?



Math Expert
Joined: 02 Sep 2009
Posts: 39719

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
28 Jul 2012, 05:54



Current Student
Joined: 28 Apr 2012
Posts: 306
Location: India
Concentration: Finance, Technology
GMAT 1: 650 Q48 V31 GMAT 2: 770 Q50 V47
WE: Information Technology (Computer Software)

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
28 Jul 2012, 09:10
1
This post received KUDOS
1
This post was BOOKMARKED
enigma123 wrote: If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal? (1) a > c (2) b > d
Any idea what is the concept behind this question to get a answer B? Of all the theories. Among 1/2, 1/3 and 1/5, only 1/3 is non terminating. So if we don't have 3 in the denominator then only p/q will be terminating. b>d, ensures we have no "3" left in the denominator, hence the decimal is terminating. (it holds true for 7,11,13....)
_________________
"Appreciation is a wonderful thing. It makes what is excellent in others belong to us as well." ― Voltaire
Press Kudos, if I have helped. Thanks!



Intern
Joined: 28 Aug 2012
Posts: 46
Location: Austria

Re: is p/q a terminating decimal? [#permalink]
Show Tags
02 Sep 2012, 06:20
1
This post received KUDOS
The question here is, whether b >= d. Why is that? p and q are given in their prime factorization. If q has more twos and/or fives in its prime factorisation than p, it won't result in a nonterminating decimal, Remainder of 2 can only be 1: 1/2=0.5 and remainders of 5 result in: 1/5=0.2, 2/5=0.4 3/5=0.6 and 4/5=0.8.
However, this is not the case with the 3. If q has more threes than p, you can cancel all of the threes in the numerator, but there will remain some threes in the denominator, resulting in a nonterminating decimal, because 1/3=0.33333 and 2/3=0.666666
Statement (1) gives us no information about b and d. Statement (2) does. There are fewer threes in the denominator. They will cancel with some of the threes in the numerator. Therefore, this statement is sufficient. We know that p/q will be a terminating decimal.
I hope my explanation is good enough.
Last edited by Zinsch123 on 02 Sep 2012, 06:29, edited 2 times in total.



Intern
Joined: 29 Aug 2012
Posts: 26
GMAT Date: 02282013

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
04 Nov 2012, 23:02
what if b = 2 & d = 3 , then we have a case for terminating decimal ?? because the denominator now would be in 2^m * 5^n form.



Director
Joined: 22 Mar 2011
Posts: 612
WE: Science (Education)

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
05 Nov 2012, 11:44
2
This post received KUDOS
himanshuhpr wrote: what if b = 2 & d = 3 , then we have a case for terminating decimal ?? because the denominator now would be in 2^m * 5^n form. Yes, \(p/q\) will be a terminating decimal. For \(b = 2\) and \(d = 3, b > d.\) Since \(p/q = 2^{ac}3^{bd}5^{e}\), the given ratio is a terminating decimal if and only if \(bd\geq{0}\) or \(b\geq{d}.\) Which means there is no factor of 3 in the denominator, only factors of 2 and/or 5, if at all. If in addition \(a\geq{c}\) and \(e\leq{0}\), the given ratio is in fact an integer, which is a terminating decimal.
_________________
PhD in Applied Mathematics Love GMAT Quant questions and running.



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16002

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
24 Oct 2014, 08:20
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Manager
Joined: 10 Sep 2014
Posts: 72

If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
25 Oct 2014, 23:58
Hi Bunuel, Quick question on this rule. How about 1/15? it can be written as 1/2^0 * 3 * 5. The denominator has 5, but the fraction is not a terminating decimal. Can you please explain why? Bunuel wrote: enigma123 wrote: If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal? (1) a > c (2) b > d
Any idea what is the concept behind this question to get a answer B? Theory:Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are nonnegative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^3\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\). Note that if denominator already has only 2s and/or 5s then it doesn't matter whether the fraction is reduced or not. For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal. We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced. BACK TO THE ORIGINAL QUESTION: If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?Question: is \(\frac{2^a*3^b}{2^c*3^d*5^e}\) a terminating decimal? The question basically asks whether we cans reduce 3^d in the denominator so to have only powers of 2 and 5 left, which can be rephrased is b (the power of 3 in the nominator) greater than or equal to d (the power of 3 in the denominator): is b>=d? (1) a > c. Not sufficient. (2) b > d. Sufficient. Answer: B. Hope it helps.
_________________
Press KUDOs if you find my explanation helpful



Math Expert
Joined: 02 Sep 2009
Posts: 39719

If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
26 Oct 2014, 06:32
TARGET730 wrote: Hi Bunuel, Quick question on this rule. How about 1/15? it can be written as 1/2^0 * 3 * 5. The denominator has 5, but the fraction is not a terminating decimal. Can you please explain why? Bunuel wrote: enigma123 wrote: If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal? (1) a > c (2) b > d
Any idea what is the concept behind this question to get a answer B? Theory:Reduced fraction \(\frac{a}{b}\) (meaning that fraction is already reduced to its lowest term) can be expressed as terminating decimal if and only \(b\) (denominator) is of the form \(2^n5^m\), where \(m\) and \(n\) are nonnegative integers. For example: \(\frac{7}{250}\) is a terminating decimal \(0.028\), as \(250\) (denominator) equals to \(2*5^3\). Fraction \(\frac{3}{30}\) is also a terminating decimal, as \(\frac{3}{30}=\frac{1}{10}\) and denominator \(10=2*5\). Note that if denominator already has only 2s and/or 5s then it doesn't matter whether the fraction is reduced or not. For example \(\frac{x}{2^n5^m}\), (where x, n and m are integers) will always be the terminating decimal. We need reducing in case when we have the prime in denominator other then 2 or 5 to see whether it could be reduced. For example fraction \(\frac{6}{15}\) has 3 as prime in denominator and we need to know if it can be reduced. BACK TO THE ORIGINAL QUESTION: If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal?Question: is \(\frac{2^a*3^b}{2^c*3^d*5^e}\) a terminating decimal? The question basically asks whether we cans reduce 3^d in the denominator so to have only powers of 2 and 5 left, which can be rephrased is b (the power of 3 in the nominator) greater than or equal to d (the power of 3 in the denominator): is b>=d? (1) a > c. Not sufficient. (2) b > d. Sufficient. Answer: B. Hope it helps. 1/15 = 1/( 3*5). For a reduced fraction to be terminating, the denominator of the fraction should NOT have any prime but 2 or/and 5. Check Terminating and Recurring Decimals Problems in our Special Questions Directory. Hope it helps.
_________________
New to the Math Forum? Please read this: All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 10 Sep 2014
Posts: 72

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
26 Oct 2014, 07:33
Got it now. Thanks Bunuel
_________________
Press KUDOs if you find my explanation helpful



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16002

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
05 Dec 2015, 08:15
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources



Math Revolution GMAT Instructor
Joined: 16 Aug 2015
Posts: 3465
GPA: 3.82

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
06 Dec 2015, 11:31
Forget conventional ways of solving math questions. In DS, Variable approach is the easiest and quickest way to find the answer without actually solving the problem. Remember equal number of variables and independent equations ensures a solution. Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 36, 0.72, and 3.005 are terminating decimals. If a, b, c, d and e are integers and p = 2^a3^b and q = 2^c3^d5^e, is p/q a terminating decimal? (1) a > c (2) b > d We can derive from p/q=2^a3^b/2^c3^d5^e, that b>=d as the denominator has to be of only 2 or 5 out of the prime factors, so 3 is eliminated and (B) hence becomes the answer. Once we modify the original condition and the question according to the variable approach method 1, we can solve approximately 30% of DS questions.
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare The oneandonly World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy. Find a 10% off coupon code for GMAT Club members. “Receive 5 Math Questions & Solutions Daily” Unlimited Access to over 120 free video lessons  try it yourself See our Youtube demo



GMAT Club Legend
Joined: 09 Sep 2013
Posts: 16002

Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3 [#permalink]
Show Tags
26 Mar 2017, 09:26
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Books  GMAT Club Tests  Best Prices on GMAT Courses  GMAT Mobile App  Math Resources  Verbal Resources




Re: If a, b, c, d and e are integers and p=2^a3^b and q=2^c3
[#permalink]
26 Mar 2017, 09:26








Similar topics 
Author 
Replies 
Last post 
Similar Topics:




a, b, c, d, and e are integers. Is the median of the integers greater

MathRevolution 
1 
08 Dec 2016, 01:38 

2


If a, b, c, d, and e are integers and cde = 0, is d = 0 ?

mipek 
10 
18 May 2017, 00:01 

9


If a, b, c, d, and e are positive integers such that

Bunuel 
6 
25 Jun 2016, 04:52 

1


If a, b, c, d, and e are distinct odd integers, which of the

macjas 
2 
29 Mar 2017, 05:40 

21


Given the ascending set of positive integers {a, b, c, d, e,

siddhans 
15 
22 May 2017, 07:53 



