GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 19 Dec 2018, 01:37

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in December
PrevNext
SuMoTuWeThFrSa
2526272829301
2345678
9101112131415
16171819202122
23242526272829
303112345
Open Detailed Calendar
  • Happy Christmas 20% Sale! Math Revolution All-In-One Products!

     December 20, 2018

     December 20, 2018

     10:00 PM PST

     11:00 PM PST

    This is the most inexpensive and attractive price in the market. Get the course now!
  • Key Strategies to Master GMAT SC

     December 22, 2018

     December 22, 2018

     07:00 AM PST

     09:00 AM PST

    Attend this webinar to learn how to leverage Meaning and Logic to solve the most challenging Sentence Correction Questions.

If ab≠0 and points (-a, b) and (-b, a) are in the same quadr

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 02 Aug 2006
Posts: 91
Location: Mumbai
If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post Updated on: 31 Jul 2014, 01:52
10
57
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

45% (01:33) correct 55% (01:54) wrong based on 799 sessions

HideShow timer Statistics

If ab≠0 and points (-a, b) and (-b, a) are in the same quadrant of the xy-plane, is point (-x, y) in the same quadrant?

(1) xy > 0
(2) ax > 0

Originally posted by jitendra on 15 May 2010, 04:37.
Last edited by Bunuel on 31 Jul 2014, 01:52, edited 3 times in total.
Added the OA
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51301
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 15 May 2010, 06:31
25
17
If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

The fact that points \((-a,b)\) and \((-b,a)\) are in the same quadrant means that \(a\) and \(b\) have the same sign. These points can be either in II quadrant, in case \(a\) and \(b\) are both positive, as \((-a,b)=(-,+)=(-b,a)\) OR in IV quadrant, in case they are both negative, as \((-a,b)=(+,-)=(-b,a)\) ("=" sign means here "in the same quadrant").

Now the point \((-x,y)\) will be in the same quadrant if \(x\) has the same sign as \(a\) (or which is the same with \(b\)) AND \(y\) has the same sign as \(a\) (or which is the same with \(b\)). Or in other words if all four: \(a\), \(b\), \(x\), and \(y\) have the same sign.

Note that, only knowing that \(x\) and \(y\) have the same sign won't be sufficient (meaning that \(x\) and \(y\) must have the same sign but their sign must also match with the sign of \(a\) and \(b\)).

(1) \(xy>0\) --> \(x\) and \(y\) have the same sign. Not sufficient.
(2) \(ax>0\) --> \(a\) and \(x\) have the same sign. But we know nothing about \(y\), hence not sufficient.

(1)+(2) \(x\) and \(y\) have the same sign AND \(a\) and \(x\) have the same sign, hence all four \(a\), \(b\), \(x\), and \(y\) have the same sign. Thus point \((-x,y)\) is in the same quadrant as points \((-a,b)\) and \((-b,a)\). Sufficient.

Answer: C.

For more in this topic check coordinate geometry chapter of math book: math-coordinate-geometry-87652.html

Hope it helps.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Intern
Intern
avatar
Joined: 31 Oct 2011
Posts: 20
Location: United Arab Emirates
GMAT 1: 700 Q45 V40
GPA: 3.41
Reviews Badge
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post Updated on: 07 Dec 2011, 17:28
I took my first GmatPrep today after studying Quant for a month(Working on a 3month plan suggested by gmatclub experts). I haven't touched Verbal yet and my score was 660 (Q49V31) although i was a little disturbed about my Verbal score since i expected better, i was pretty surprised how getting 13 questions wrong in Quant got me to 49. But since GMAT is adaptive i guessed its possible.
Anyways, i reworked the incorrect questions after the exam and cracked a few of them, however there are a few others that just stumped me completely even after giving them a 2nd shot.

1. If ab!=0 and point (-a,b) and (-b,a) are in the same quadrant ,does point (-x,y) lie in this quadrant?
i) xy>0
ii) ax>0

There are a few others coming up..Please let me know if I made a rookie mistake :beat by posting these here when it should be in some other forum category, I searched a lot couldn't really find any other suitable place. Thanks :thanks

Originally posted by ijoshi on 07 Dec 2011, 10:43.
Last edited by ijoshi on 07 Dec 2011, 17:28, edited 2 times in total.
Intern
Intern
avatar
Joined: 14 Sep 2010
Posts: 17
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post Updated on: 31 Jan 2012, 15:26
1
(-a, b) and (-b, a) are in the same quadrant.
Is the point (-x, y) in the same quadrant as point (-a, b)?

(1) xy > 0
(2) ax > 0

From the information that (-a, b) and (-b, a) are in the same quadrant, it can be determined that
(-a, b) is in either quadrant II or quadrant IV. If (x, y) and (a, b) are in the same exact quadrant, they will have the same sign and (-x, y) will be in the same quadrant as (-a, b)'s.

(1) xy > 0

(x, y) is in quadrant I or quadrant III.
(-x, y) is in quadrant II or quadrant IV.
No further information is provided about (-a, b).

(2) ax > 0

Point x in (x, y) has the same sign as does point a in (a, b). Since a and b have the same sign, x, a and b have the same sign.

But the sign of point x could be different from, or the same as, the sign of point y. The condition that (x, y) and (a, b) have the same sign, and therefore that (-x, y) and (-a, b) are in the same quadrant, is possible but uncertain.

Combined analysis:

x has the same sign as y
x has the same sign as a and b
x, y, a and b all have the same sign.

This means (x, y) and (a, b) are in the same quadrant. (-x, y) and (-a, b) are in the same quadrant.


[xyab+xdj]

Originally posted by Study1 on 18 Dec 2011, 15:48.
Last edited by Study1 on 31 Jan 2012, 15:26, edited 3 times in total.
Magoosh GMAT Instructor
User avatar
G
Joined: 28 Dec 2011
Posts: 4488
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 04 Jan 2012, 11:41
10
Hi, there! I'm happy to help with this. :)

First, a quick review of quadrants: what defines the quadrants are the +/- signs of x and y

1) In Quadrant I, x > 0 and y > 0
2) In Quadrant II, x < 0 and y > 0
3) In Quadrant III, x < 0 and y < 0
4) In Quadrant VI, x > 0 and y < 0

If (-a, b) and (-b, a) are in the same quadrant, that means that the x-coordinates have the same sign, and also the y-coordinates have the same sign. Look at the y-coordinates --- if the two points are in the same quadrant, a & b have the same sign. They either could both be positive (in which case, the points would be in Quadrant II) or they could both be negative (in which case, the points would be in Quadrant IV).

Now, the question is: (-x, y) in the same quadrant as these two points?

(1) Statement 1: xy > 0

This tells us that x and y have the same sign --- both positive or both negative. Now, we know a & b have the same sign, and x & y have the same sign, but there's two possibilities for each, so we don't know whether a & b & x & y all have the same sign. This is insufficient.

(2) Statement 2: ax > 0

This, by itself, tells us that a and x have the same sign -- with this alone, we know that a & b & x all have the same sign, but we have zeor information about y. This too is insufficient.

Combined (1) & (2)
Prompt tells us a & b have the same sign. Statement #1 tells us x & y have the same sign. Statement #2 tells us x & a have the same sign. Put it all together --> we now know that x & y & a & b all have the same sign. Therefore, (-x, y) will have the same sign x- & y-coordinates as (-a, b) & (-b, a), and therefore all will be in the same quadrant. Combined statements are sufficient.

Answer = C

Here's another coordinate plane practice question just for practice.

http://gmat.magoosh.com/questions/1028

Does all that make sense? Please let me know if you have any additional questions.

Mike :-)
_________________

Mike McGarry
Magoosh Test Prep


Education is not the filling of a pail, but the lighting of a fire. — William Butler Yeats (1865 – 1939)

Manager
Manager
User avatar
Joined: 29 Jul 2011
Posts: 89
Location: United States
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 04 Jan 2012, 12:44
1
Lets rephrase the stem first. For (-a,b) and (-b, a) to lie in same quadrant, both are either positive or negative.

1. xy>0, which means both are either positive or negative. Say a and b are positive, so they lie in IV. But xy could be ++ or --, causing it to lie in II or IV. Insufficient.

2. ax>0. which means positive or negative. What about y? No data on y causes this statement to be insufficient.

Together, means that a, x and y have same signs, therefore same quadrants. Sufficient - C.
_________________

I am the master of my fate. I am the captain of my soul.
Please consider giving +1 Kudos if deserved!

DS - If negative answer only, still sufficient. No need to find exact solution.
PS - Always look at the answers first
CR - Read the question stem first, hunt for conclusion
SC - Meaning first, Grammar second
RC - Mentally connect paragraphs as you proceed. Short = 2min, Long = 3-4 min

Senior Manager
Senior Manager
avatar
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 474
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE: Information Technology (Consulting)
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 15 Feb 2012, 15:51
Thanks everyone. But I am still getting confused between x, y a and b. Are we saying x and y as cordinates and a and b as points i.e. x(-a,b) and y(-b,a)?
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51301
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 15 Feb 2012, 16:05
enigma123 wrote:
Thanks everyone. But I am still getting confused between x, y a and b. Are we saying x and y as cordinates and a and b as points i.e. x(-a,b) and y(-b,a)?


We have 3 points with coordinates (-a,b), (-b,a) and (-x, y).

Also, check Coordinate Geometry chapter of Math Book: math-coordinate-geometry-87652.html

Hope it's clear.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
avatar
Status: Finally Done. Admitted in Kellogg for 2015 intake
Joined: 25 Jun 2011
Posts: 474
Location: United Kingdom
Concentration: International Business, Strategy
GMAT 1: 730 Q49 V45
GPA: 2.9
WE: Information Technology (Consulting)
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 15 Feb 2012, 16:09
Yes Bunuel - got it now. Thanks.
_________________

Best Regards,
E.

MGMAT 1 --> 530
MGMAT 2--> 640
MGMAT 3 ---> 610
GMAT ==> 730

Manager
Manager
avatar
Joined: 20 Jun 2012
Posts: 82
Location: United States
Concentration: Finance, Operations
GMAT 1: 710 Q51 V25
GMAT ToolKit User
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 30 Sep 2013, 11:48
1
jitendra wrote:
If ab≠0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

(1) xy>0
(2) ax>0


A table will help ..


a b -a,b -b,a
+ + 2nd 2nd
+ - 3rd 1st
- + 1st 3rd
- - 4th 4th

you gotta know following:
+,+ >> 1st
-,+ >> 2nd
-,- >> 3rd
+,- >> 4th


this tells us (-a, b) and (-b, a) are either in 2nd quadrant or in 4th quadrant ..

1.) xy>0 means both have same sign and -x,y could be in 2nd or 4th quadrant .. its possible that -x,y is in 4th quadrant and (-a, b) and (-b, a) in 2nd and vice-a-versa .. hence insufficient

2.) ax>0 .. no info about y ... not sufficient

1+2 >> a and x both +ve 2nd qadrant
both negative, 4th quatrant .. hence -x,y and the points given in question will be in same quadrant .. C answer
_________________

Forget Kudos ... be an altruist

Manager
Manager
avatar
Joined: 07 May 2013
Posts: 97
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 13 Oct 2013, 20:00
(1)+(2) x and y have the same sign AND a and x have the same sign, hence all four a, b, x, and y have the same sign. Thus point (-x,y) is in the same quadrant as points (-a,b) and (-b,a). Sufficient.

Bunuel, you are saying that (1)+(2) tells us that ALL a, b, x, and y have the same sign
Here's my doubt:
statements (1)+(2) give us info ONLY about the signs of a, x, and y.
You are telling that if "a, x, and y all have the SAME sign then b also has the same sign as a, x, and y."
How could you a say that because b does not form part of any of the statements (1) or (2)
So, what I mean to say is that b can be +ve or -ve irrespective of what signs a, x, and y take.
Please clear my doubt Bunuel.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51301
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 13 Oct 2013, 23:19
madn800 wrote:
(1)+(2) x and y have the same sign AND a and x have the same sign, hence all four a, b, x, and y have the same sign. Thus point (-x,y) is in the same quadrant as points (-a,b) and (-b,a). Sufficient.

Bunuel, you are saying that (1)+(2) tells us that ALL a, b, x, and y have the same sign
Here's my doubt:
statements (1)+(2) give us info ONLY about the signs of a, x, and y.
You are telling that if "a, x, and y all have the SAME sign then b also has the same sign as a, x, and y."
How could you a say that because b does not form part of any of the statements (1) or (2)
So, what I mean to say is that b can be +ve or -ve irrespective of what signs a, x, and y take.
Please clear my doubt Bunuel.


The fact that points \((-a,b)\) and \((-b,a)\) are in the same quadrant means that \(a\) and \(b\) have the same sign.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior Manager
Senior Manager
avatar
Joined: 07 Sep 2010
Posts: 260
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 15 Oct 2013, 21:02
mikemcgarry wrote:
Hi, there! I'm happy to help with this. :)

First, a quick review of quadrants: what defines the quadrants are the +/- signs of x and y

1) In Quadrant I, x > 0 and y > 0
2) In Quadrant II, x < 0 and y > 0
3) In Quadrant III, x < 0 and y < 0
4) In Quadrant VI, x > 0 and y < 0

If (-a, b) and (-b, a) are in the same quadrant, that means that the x-coordinates have the same sign, and also the y-coordinates have the same sign. Look at the y-coordinates --- if the two points are in the same quadrant, a & b have the same sign. They either could both be positive (in which case, the points would be in Quadrant II) or they could both be negative (in which case, the points would be in Quadrant IV).


Can someone please provide insights in the above colored part.
I'm not sure if I would be able to deduce it under timed conditions. I know, this can be proved by taking hypothetical coordinates and see the behavior. However, I would like to understand it conceptually.

Please help.

Regards,
imhimanshu
Intern
Intern
avatar
Joined: 14 Mar 2013
Posts: 44
Location: United States
Concentration: General Management, Leadership
GMAT Date: 12-03-2013
WE: General Management (Retail)
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 19 Nov 2013, 14:41
ab≠0 and points (-a,b) and (-b,a) are in the same quadrant → tells me that a and b are both + or -

(1) xy>0 → tells me that x and y are both + or -. Not suffient

(2) ax>0 → tells me that a, b and x are all + or -. Not suffient

(1)+(2) enabled me to answer the question: C
Manager
Manager
User avatar
B
Joined: 09 Nov 2013
Posts: 73
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 10 Sep 2014, 11:08
Bunuel wrote:
If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

The fact that points \((-a,b)\) and \((-b,a)\) are in the same quadrant means that \(a\) and \(b\) have the same sign. These points can be either in II quadrant, in case \(a\) and \(b\) are both positive, as \((-a,b)=(-,+)=(-b,a)\) OR in IV quadrant, in case they are both negative, as \((-a,b)=(+,-)=(-b,a)\) ("=" sign means here "in the same quadrant").

Now the point \((-x,y)\) will be in the same quadrant if \(x\) has the same sign as \(a\) (or which is the same with \(b\)) AND \(y\) has the same sign as \(a\) (or which is the same with \(b\)). Or in other words if all four: \(a\), \(b\), \(x\), and \(y\) have the same sign.

Note that, only knowing that \(x\) and \(y\) have the same sign won't be sufficient (meaning that \(x\) and \(y\) must have the same sign but their sign must also match with the sign of \(a\) and \(b\)).

(1) \(xy>0\) --> \(x\) and \(y\) have the same sign. Not sufficient.
(2) \(ax>0\) --> \(a\) and \(x\) have the same sign. But we know nothing about \(y\), hence not sufficient.

(1)+(2) \(x\) and \(y\) have the same sign AND \(a\) and \(x\) have the same sign, hence all four \(a\), \(b\), \(x\), and \(y\) have the same sign. Thus point \((-x,y)\) is in the same quadrant as points \((-a,b)\) and \((-b,a)\). Sufficient.

Answer: C.

For more in this topic check coordinate geometry chapter of math book: math-coordinate-geometry-87652.html

Hope it helps.


Hey Bunuel just asking a relevant doubt. Does ( -b,-a) or (-a,-b) lies in the same quadrant as (a,b) ?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 51301
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 10 Sep 2014, 11:39
Sidhrt wrote:
Bunuel wrote:
If ab different from 0 and points (-a,b) and (-b,a) are in the same quadrant of the xy-plane, is point (-x,y) in the same quadrant?

The fact that points \((-a,b)\) and \((-b,a)\) are in the same quadrant means that \(a\) and \(b\) have the same sign. These points can be either in II quadrant, in case \(a\) and \(b\) are both positive, as \((-a,b)=(-,+)=(-b,a)\) OR in IV quadrant, in case they are both negative, as \((-a,b)=(+,-)=(-b,a)\) ("=" sign means here "in the same quadrant").

Now the point \((-x,y)\) will be in the same quadrant if \(x\) has the same sign as \(a\) (or which is the same with \(b\)) AND \(y\) has the same sign as \(a\) (or which is the same with \(b\)). Or in other words if all four: \(a\), \(b\), \(x\), and \(y\) have the same sign.

Note that, only knowing that \(x\) and \(y\) have the same sign won't be sufficient (meaning that \(x\) and \(y\) must have the same sign but their sign must also match with the sign of \(a\) and \(b\)).

(1) \(xy>0\) --> \(x\) and \(y\) have the same sign. Not sufficient.
(2) \(ax>0\) --> \(a\) and \(x\) have the same sign. But we know nothing about \(y\), hence not sufficient.

(1)+(2) \(x\) and \(y\) have the same sign AND \(a\) and \(x\) have the same sign, hence all four \(a\), \(b\), \(x\), and \(y\) have the same sign. Thus point \((-x,y)\) is in the same quadrant as points \((-a,b)\) and \((-b,a)\). Sufficient.

Answer: C.

For more in this topic check coordinate geometry chapter of math book: math-coordinate-geometry-87652.html

Hope it helps.


Hey Bunuel just asking a relevant doubt. Does ( -b,-a) or (-a,-b) lies in the same quadrant as (a,b) ?


Do you mean generally? If yes, then:

(a, b) and (-a, -b) will never be in the same quadrant.

(a, b) and (-b, -a) will be in the same quadrant if a is positive and b is negative, in this case (a, b) = (+, -) and (-b, -a) = (+, -) OR when a is negative and b is positive, in this case (a, b) = (-, +) and (-b, -a) = (-, +).
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Senior PS Moderator
User avatar
V
Joined: 26 Feb 2016
Posts: 3327
Location: India
GPA: 3.12
Premium Member CAT Tests
Re: If ab ≠ 0 and points (–a, b) and (–b, a) are in the same quadrant ..  [#permalink]

Show Tags

New post 10 Jun 2017, 00:56
From the question stem, we can clearly tell that (–a, b) and (–b, a) are in the same quadrant
if both a,b are positive or negative.
We are asked to find if the point(-x,y) is also in the same quadrant

1. if xy > 0 , both x and y are postive, or both their values are negative are two options available.
When x and y are positive, if a and b are negative, they will not be in same quadrant.
But, if x and y are postive and a and b are also positive, these points will be in the same quadrant
Hence, insufficient.

2. ax > 0, both a and x are positive or both of them are negative.
When a and x are postive, b and y can be both negative or positive.
In one of the cases, we will have a YES, , for the point(-x,y) being in the same quadrant.
whereas in the other case, we will have a NO, for the point(-x,y) being in the same quadrant.
Hence insufficient.

But on combining the two, either a,b,x,y are all negative or all positive and clearly lie in the same quadrant
Sufficient(Option C)
_________________

You've got what it takes, but it will take everything you've got

Manager
Manager
avatar
S
Joined: 10 Oct 2018
Posts: 96
Location: United States
Schools: Sloan (MIT)
GPA: 4
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr  [#permalink]

Show Tags

New post 04 Dec 2018, 06:04
ijoshi wrote:

1. If ab!=0 and point (-a,b) and (-b,a) are in the same quadrant ,does point (-x,y) lie in this quadrant?
i) xy>0
ii) ax>0



Bunuel how to solve this question? I got stuck at ab!=0. Does it mean a & b is either be 0 and/or 1? Then how come it's possible for the rest of the points to be in the same quadrant?
_________________

Kudos OK Please!!

GMAT Club Bot
Re: If ab≠0 and points (-a, b) and (-b, a) are in the same quadr &nbs [#permalink] 04 Dec 2018, 06:04
Display posts from previous: Sort by

If ab≠0 and points (-a, b) and (-b, a) are in the same quadr

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.