Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 17 Mar 2010
Posts: 161

If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
17 Sep 2010, 05:03
2
This post received KUDOS
14
This post was BOOKMARKED
Question Stats:
55% (00:55) correct 45% (00:41) wrong based on 703 sessions
HideShow timer Statistics
Attachment:
Triangle.jpg [ 2.62 KiB  Viewed 15487 times ]
If AD is 6 and ADC is a right angle, what is the area of triangular region ABC? (1) Angle ABD = 60° (2) AC = 12
Official Answer and Stats are available only to registered users. Register/ Login.
Last edited by Bunuel on 04 Apr 2013, 11:21, edited 4 times in total.
Edited the question and added the diagram



Intern
Joined: 18 Jul 2010
Posts: 47

Re: Area of triangular region [#permalink]
Show Tags
17 Sep 2010, 05:22
I am not 100% sure of my answer but I think it's correct:
(1) it tells us that we have a triangle 906030 so now, we are able to place the points on the triangle (where is A, where is D and where is C). So we know that A is the right angle, D the 60 degree angle and C the 30 degree angle.
That is not sufficient though...
(2) AD = 6, AC = 12 but which side is the hypothenuse ?????? we can't compute the area ! Insufficient !
(1) and (2)
We know that AC is the hypothenuse, AD the height and AC the basis.
Area = AD * AC / 2 so BOTH TOGETHER
ANS : C.



Math Expert
Joined: 02 Sep 2009
Posts: 44319

Re: Area of triangular region [#permalink]
Show Tags
17 Sep 2010, 05:25
4
This post received KUDOS
Expert's post
3
This post was BOOKMARKED
amitjash wrote: If AD is 6 and ADC is a right angle, what is the area of triangular region ABC? 1. Angle ABD=60 2. AC=12
Can someone explain??? There should be a diagram attached: Attachment:
2cr0lsz.jpg [ 7.64 KiB  Viewed 16285 times ]
Given: \(AD=6\). Question: \(area_{ABC}=\frac{1}{2}*AD*BC=\frac{1}{2}*6*(BD+DC)=3(BD+DC)=?\) (1) Angle ABD = 60 > triangle ABD is 306090 triangle, so the sides are in ratio \(1:\sqrt{3}:2\) > as AD=6 (larger leg opposite 60 degrees angle) then \(BD=\frac{6}{\sqrt{3}}\) (smallest leg opposite 30 degrees angle). But we still don't know DC. Not sufficient. (2) AC=12, we can find DC. But we still don't know BD. Not sufficient. (1)+(2) We know both BD and DC, hence we can find area. Sufficient. Answer: C.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Manager
Joined: 27 Oct 2011
Posts: 176
Location: United States
Concentration: Finance, Strategy
GPA: 3.7
WE: Account Management (Consumer Products)

If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
15 Apr 2012, 15:11
1
This post received KUDOS
with statement 1 we can only figure out that the left triangle is a 306090. We cannot just assume that the left triangle is also a 306090. The sides could be longer or shorter than shown. the same idea as statement 1 for 2. no assumptions can be made for the left triangle given that the side is 12. if we combine both questions together then we can find out vital information for both triangles.
_________________
DETERMINED TO BREAK 700!!!



Intern
Joined: 26 May 2012
Posts: 9
Concentration: Human Resources, Leadership
GMAT Date: 07042012

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
29 Jun 2012, 04:44
2
This post received KUDOS
but isn't triangle ABD similar to triangle ADC since AD is the perpendicular. so using the ratio of 2:1:√3 we can find all sides of triangle ABD and since AD is common using proportions we can find DC ? and thus the total area ?



Math Expert
Joined: 02 Sep 2009
Posts: 44319

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
29 Jun 2012, 05:05



Senior Manager
Joined: 06 Aug 2011
Posts: 380

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
23 Oct 2012, 06:19
1
This post received KUDOS
Hello Bunuel .. there is a rule that ..perpendicular line bisect the angle.. so cant we here assume it that BD=DC??.. i think its A..if we knw its 30 60 90 triangle..and we can get BD..BD=CD..we can get the area.. where m i wrong Bunuel..?
_________________
Bole So Nehal.. Sat Siri Akal.. Waheguru ji help me to get 700+ score !



Math Expert
Joined: 02 Sep 2009
Posts: 44319

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
23 Oct 2012, 06:25



Manager
Joined: 07 Feb 2011
Posts: 105

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
04 Apr 2013, 11:00
1
This post received KUDOS
Hey I had the same question as the last poster. How do we know that BD and DC are of the same length? or that angle BAC has been bisected?
_________________
We appreciate your kudos'



Math Expert
Joined: 02 Sep 2009
Posts: 44319

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
04 Apr 2013, 11:25



Manager
Joined: 21 Jul 2012
Posts: 68

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
27 Apr 2013, 14:23
Bunuel wrote: manimgoindowndown wrote: Hey I had the same question as the last poster. How do we know that BD and DC are of the same length? or that angle BAC has been bisected? They are not equal: \(BD=\frac{6}{\sqrt{3}}\) (from the first statement) and \(AD=6*\sqrt{3}\) (from the second statement). What if this was a problem solving and you could not verify using the way in which you did above?



Math Expert
Joined: 02 Sep 2009
Posts: 44319

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
28 Apr 2013, 03:30



Manager
Joined: 26 Sep 2013
Posts: 211
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41 GMAT 2: 730 Q49 V41

Re: Area of triangular region [#permalink]
Show Tags
26 Oct 2013, 11:54
1
This post received KUDOS
Bunuel wrote: amitjash wrote: If AD is 6 and ADC is a right angle, what is the area of triangular region ABC? 1. Angle ABD=60 2. AC=12
Can someone explain??? There should be a diagram attached: Attachment: 2cr0lsz.jpg Given: \(AD=6\). Question: \(area_{ABC}=\frac{1}{2}*AD*BC=\frac{1}{2}*6*(BD+DC)=3(BD+DC)=?\) (1) Angle ABD = 60 > triangle ABD is 306090 triangle, so the sides are in ratio \(1:\sqrt{3}:2\) > as AD=6 (larger leg opposite 60 degrees angle) then \(BD=\frac{6}{\sqrt{3}}\) (smallest leg opposite 30 degrees angle). But we still don't know DC. Not sufficient. (2) AC=12, we can find DC. But we still don't know BD. Not sufficient. (1)+(2) We know both BD and DC, hence we can find area. Sufficient. Answer: C. I thought if you dropped something that was perpindicular to the base of a triangle then it was automatically a bisector; so if you found BD using (1) BD MUST equal dc, no?



Math Expert
Joined: 02 Sep 2009
Posts: 44319

Re: Area of triangular region [#permalink]
Show Tags
27 Oct 2013, 07:03
AccipiterQ wrote: Bunuel wrote: amitjash wrote: If AD is 6 and ADC is a right angle, what is the area of triangular region ABC? 1. Angle ABD=60 2. AC=12
Can someone explain??? There should be a diagram attached: Attachment: 2cr0lsz.jpg Given: \(AD=6\). Question: \(area_{ABC}=\frac{1}{2}*AD*BC=\frac{1}{2}*6*(BD+DC)=3(BD+DC)=?\) (1) Angle ABD = 60 > triangle ABD is 306090 triangle, so the sides are in ratio \(1:\sqrt{3}:2\) > as AD=6 (larger leg opposite 60 degrees angle) then \(BD=\frac{6}{\sqrt{3}}\) (smallest leg opposite 30 degrees angle). But we still don't know DC. Not sufficient. (2) AC=12, we can find DC. But we still don't know BD. Not sufficient. (1)+(2) We know both BD and DC, hence we can find area. Sufficient. Answer: C. I thought if you dropped something that was perpindicular to the base of a triangle then it was automatically a bisector; so if you found BD using (1) BD MUST equal dc, no? Of course not. Are you saying that the height and the median in any triangle coincide? That's not true.
_________________
New to the Math Forum? Please read this: Ultimate GMAT Quantitative Megathread  All You Need for Quant  PLEASE READ AND FOLLOW: 12 Rules for Posting!!! Resources: GMAT Math Book  Triangles  Polygons  Coordinate Geometry  Factorials  Circles  Number Theory  Remainders; 8. Overlapping Sets  PDF of Math Book; 10. Remainders  GMAT Prep Software Analysis  SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS)  Tricky questions from previous years.
Collection of Questions: PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.
What are GMAT Club Tests? Extrahard Quant Tests with Brilliant Analytics



Senior Manager
Joined: 08 Apr 2012
Posts: 437

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
28 Oct 2013, 15:05
The triangles are similar if you take both statements together. (1) gives you all angles of the left triangle. (2) gives you the length of two sides of a triangle, and it's given that it's a right triangle From the above you know that the triangles are similar and equal to each other (because they share the same side that's relative to the same angle)...



Senior Manager
Joined: 13 May 2013
Posts: 456

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
11 Dec 2013, 09:36
If AD is 6 and ADC is a right angle, what is the area of triangular region ABC?
(1) Angle ABD = 60°
If ABD is 60 then we know triangle ABD = 30:60:90 triangle. Coupled with the one measurement we are given we can find the length of the other two sides of this triangle. However, we know nothing about AC or DC, only that triangle ADC is right  we don't know the measurements of the angles so we cannot find their leg lengths. For example, DC could be six inches long or 20. We don't know and therefore cannot find the area of this triangle. Insufficient.
(2) AC = 12 We have a leg and a hypotenuse of a right triangle so we can find the length of the second leg but we know nothing about triangle ABD, except for one leg length. Insufficient.
1+2) 1 Gives us the length of all 3 sides of ABD. 2 gives us the length of all three sides of ADC. Sufficient.
C



Manager
Joined: 26 Sep 2013
Posts: 211
Concentration: Finance, Economics
GMAT 1: 670 Q39 V41 GMAT 2: 730 Q49 V41

Re: Area of triangular region [#permalink]
Show Tags
15 Dec 2013, 16:05
1
This post received KUDOS
Bunuel wrote: amitjash wrote: If AD is 6 and ADC is a right angle, what is the area of triangular region ABC? 1. Angle ABD=60 2. AC=12
Can someone explain??? There should be a diagram attached: Attachment: 2cr0lsz.jpg Given: \(AD=6\). Question: \(area_{ABC}=\frac{1}{2}*AD*BC=\frac{1}{2}*6*(BD+DC)=3(BD+DC)=?\) (1) Angle ABD = 60 > triangle ABD is 306090 triangle, so the sides are in ratio \(1:\sqrt{3}:2\) > as AD=6 (larger leg opposite 60 degrees angle) then \(BD=\frac{6}{\sqrt{3}}\) (smallest leg opposite 30 degrees angle). But we still don't know DC. Not sufficient. (2) AC=12, we can find DC. But we still don't know BD. Not sufficient. (1)+(2) We know both BD and DC, hence we can find area. Sufficient. Answer: C. I thought if you dropped a line down from a triangle vertex and it formed a right angle on the opposite side then that line bisected the side? So in this case if you know what BD is then you know what DC is?



Veritas Prep GMAT Instructor
Joined: 16 Oct 2010
Posts: 7991
Location: Pune, India

Re: Area of triangular region [#permalink]
Show Tags
15 Dec 2013, 23:21
AccipiterQ wrote: I thought if you dropped a line down from a triangle vertex and it formed a right angle on the opposite side then that line bisected the side? So in this case if you know what BD is then you know what DC is?
To figure out whether it holds, why don't you try drawing some extreme figures, say, something like this: Attachment:
Ques3.jpg [ 3.67 KiB  Viewed 2948 times ]
Will this be true in this case? When will it be true? When the triangle is equilateral, sure. Also when the triangle is isosceles if the equal sides form the angle from which the altitude is dropped. Don't put your faith in the figure given. It may be just one of the many possibilities or may be somewhat misleading.
_________________
Karishma Veritas Prep  GMAT Instructor My Blog
Get started with Veritas Prep GMAT On Demand for $199
Veritas Prep Reviews



Director
Affiliations: CrackVerbal
Joined: 03 Oct 2013
Posts: 517
Location: India

Re: If AD is 6 and ADC is a right angle, what is the area of [#permalink]
Show Tags
15 Dec 2013, 23:50
amitjash wrote: Attachment: Triangle.jpg If AD is 6 and ADC is a right angle, what is the area of triangular region ABC? (1) Angle ABD = 60° (2) AC = 12 Statement I is insufficient The left triangle becomes a 90 30 60 triangle however we don't know anything about the right triangle Statement II is insufficient The right triangle becomes a 90 30 60 triangle however we don't know anything about the left triangle Combining is sufficient We know both the triangles are 90 30 60 with same sides. Hence Answer is C Pushpinder Gill
_________________
Join Free 4 part MBA Through GMAT Video Training Series here  https://gmat.crackverbal.com/mbathroughgmatvideo2018
Enroll for our GMAT Trial Course here  http://gmatonline.crackverbal.com/
For more info on GMAT and MBA, follow us on @AskCrackVerbal



Intern
Joined: 17 Jun 2013
Posts: 5

Re: Area of triangular region [#permalink]
Show Tags
24 Jan 2014, 22:10
Hi Bunuel,
I have a question.
Can I not imagine that, in a right angled triangle if one of the side of a triangle bears x square root 3 as its length can I not imagine that it's a 306090? If not why.
Please help. Thanks Suneel




Re: Area of triangular region
[#permalink]
24 Jan 2014, 22:10



Go to page
1 2
Next
[ 32 posts ]



