Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized for You

we will pick new questions that match your level based on your Timer History

Track Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

It appears that you are browsing the GMAT Club forum unregistered!

Signing up is free, quick, and confidential.
Join other 500,000 members and get the full benefits of GMAT Club

Registration gives you:

Tests

Take 11 tests and quizzes from GMAT Club and leading GMAT prep companies such as Manhattan GMAT,
Knewton, and others. All are free for GMAT Club members.

Applicant Stats

View detailed applicant stats such as GPA, GMAT score, work experience, location, application
status, and more

Books/Downloads

Download thousands of study notes,
question collections, GMAT Club’s
Grammar and Math books.
All are free!

Thank you for using the timer!
We noticed you are actually not timing your practice. Click the START button first next time you use the timer.
There are many benefits to timing your practice, including:

If arc PQR above is a semicircle, what is the length of diameter PR?

You should know the following properties to solve this question: • A right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

So, as given that PR is a diameter then angle PQR is a right angle.

• Perpendicular to the hypotenuse will always divide the triangle into two triangles with the same properties as the original triangle.

Thus, the perpendicular QT divides right triangle PQR into two similar triangles PQT and QRT (which are also similar to big triangle PQR). Now, in these three triangles the ratio of the corresponding sides will be equal (corresponding sides are the sides opposite the same angles). For example: QR/PR=QT/PQ=TR/QR. This property (sometimes along with Pythagoras) will give us the following: if we know ANY 2 values from PR, PQ, QR, PT, QT, TR then we'll be able to find other 4. We are given that QT=2 thus to find PR we need to know the length of any other line segment.

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

22 Dec 2012, 06:04

Walkabout wrote:

Attachment:

The attachment Semicircle2.png is no longer available

If arc PQR above is a semicircle, what is the length of diameter PR ?

(1) a = 4 (2) b= 1

Another approach that could be implemented in thsi question is: Since there is a perpendicular drawn to the hypotenuese, therefore the two triangles that are formed must be similar to each other and to the larger one.

So if one side of a triangle reduces by a certain ratio, the other side must also reduce. In the diagram attached, if one considers any of the statement then he will be able to find out the other side. Consider statement 1) a=4

Look into the diagram. In the middle triangle, "a" or PI=4. We are given with the fact that IQ=2. Now in the smallest triangle, the corresponding side of PI=IQ. IQ=2. Therefore the factor with which PI has reduced is 2. Therefore other side must also reduce by the same factor. Hence IR=1. Sufficient

Statement 2) b=1. "b" is the corresponding side of IQ. So IQ , in the middle traingle, has reduced by a factor of 2. In the smallest triangle IQ=2. Therefore PI must be 4. Sufficient.

Attachments

geometry solution.png [ 13.23 KiB | Viewed 24032 times ]

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

29 Mar 2014, 03:55

Can anybody explain why the area of the triangle PQR : Which is a right angle triangle in the figure above at Q, is not 1/2*QR*PQ ? Assuming this triangle was drawn without the semi-circle and if I slightly redraw the triangle keeping the base at QR, and PQ becomes the height and PR is the hypotenuse, then isnt the area of the triangle 1/2*QR*PQ?

Why is it that in these type of triangles which are drawn in such manner, that the hypotenuse is the base, the height is drawn from one vertex to another and then area is calculated?

This question is just to douse this silly doubt lingering in my head.

Can anybody explain why the area of the triangle PQR : Which is a right angle triangle in the figure above at Q, is not 1/2*QR*PQ ? Assuming this triangle was drawn without the semi-circle and if I slightly redraw the triangle keeping the base at QR, and PQ becomes the height and PR is the hypotenuse, then isnt the area of the triangle 1/2*QR*PQ?

Why is it that in these type of triangles which are drawn in such manner, that the hypotenuse is the base, the height is drawn from one vertex to another and then area is calculated?

This question is just to douse this silly doubt lingering in my head.

The area of triangle PQR IS 1/2*PQ*QR but it's ALSO 1/2*PR*QT.
_________________

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

16 Jul 2014, 23:12

1

This post was BOOKMARKED

Bunuel wrote:

If arc PQR above is a semicircle, what is the length of diameter PR?

Also in such kind of triangles might be useful to equate the areas to find the length of some line segment, for example area of PQR=1/2*QT*PR=1/2*QP*QR

(1) a = 4. Sufficient.

(2) b = 1. Sufficient.

Answer: D.

1/2*QT*PR=1/2*QP*QR => PR = (QP*QR)/2

With this equation, how statement 1 or 2 is being judged. Will you please fill up the gap?
_________________

______________ KUDOS please, if you like the post or if it helps "Giving kudos" is a decent way to say "Thanks"

If arc PQR above is a semicircle, what is the length of diameter PR?

Also in such kind of triangles might be useful to equate the areas to find the length of some line segment, for example area of PQR=1/2*QT*PR=1/2*QP*QR

(1) a = 4. Sufficient.

(2) b = 1. Sufficient.

Answer: D.

1/2*QT*PR=1/2*QP*QR => PR = (QP*QR)/2

With this equation, how statement 1 or 2 is being judged. Will you please fill up the gap?

It's better to use ratios for this question.

For (1) use the following ratio: PT/QT = QT/RT --> 4/2 = 2/RT --> RT = 1 --> PR = PT + RT = 4 + 1 = 5.

For (2) use the the same ratio: PT/QT = QT/RT --> PT/2 = 2/1--> PT = 4 --> PR = PT + RT = 4 + 1 = 5.

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

02 Jun 2015, 01:02

Bunuel wrote:

Attachment:

Semicircle2.PNG

If arc PQR above is a semicircle, what is the length of diameter PR?

You should know the following properties to solve this question: • A right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

So, as given that PR is a diameter then angle PQR is a right angle.

• Perpendicular to the hypotenuse will always divide the triangle into two triangles with the same properties as the original triangle.

Thus, the perpendicular QT divides right triangle PQR into two similar triangles PQT and QRT (which are also similar to big triangle PQR). Now, in these three triangles the ratio of the corresponding sides will be equal (corresponding sides are the sides opposite the same angles). For example: QR/PR=QT/PQ=TR/QR. This property (sometimes along with Pythagoras) will give us the following: if we know ANY 2 values from PR, PQ, QR, PT, QT, TR then we'll be able to find other 4. We are given that QT=2 thus to find PR we need to know the length of any other line segment.

we do not need to know this property. just make an equation in which b is a unknown number . we can solve

we can not remember this property in the test room.

the og explanation of this problem is good enough.

there are 5 or 6 person who following me whenever I go out of my house. I feel not safe. those persons prevent me from looking for the British I met in Halong bay. before I worked for a janapese company
_________________

visit my facebook to help me. on facebook, my name is: thang thang thang

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

10 May 2016, 06:04

1

This post received KUDOS

Do you seriously think that question will ask what is a+b = ? So that , from stat (1) + (2) you can say a + b = 5 ; GMAT will never ask addition of two numbers , so cut out the option C and try to get the soln from A and from B alone.

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

31 Jul 2016, 01:01

1

This post received KUDOS

Walkabout wrote:

Attachment:

Semicircle.png

If arc PQR above is a semicircle, what is the length of diameter PR ?

(1) a = 4 (2) b = 1

I did this in a different way and still got the same answer, So if you look at the property of a semicircle, then if the triangle is formed using the diameter of the semicircle the the angle subtended by the angle formed at the arc is 90

Now given that Pythagorus theorem for the bog triangle PQR, \(PQ^2=QR^2+PR^2\); \(PR^2= (a+b)^2\) Now let PQ be x and QR be y then \(x^2+y^2= (a+b)^2\)---eq1

Smaller triangles PQa \(x^2=a^2+4\); QRb \(y^2= b^2+4\)--- eq2,3 now eq 2+3 \(x^2+y^2=a^2+b^2+8\) equate the same with eq 1 and get rid of x and y

\((a+b)^2=a^2+b^2+8\) \(a^2+b^2+2ab=a^2+b^2+8\)

2ab=8 ab=4

Now the question is actually asking if ab=4 what is a+b

knowing either the value of a or b we will know the other variable because of the multiplication constraint and get a+b

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

08 Feb 2017, 00:12

Since angle PQR is inscribed in a semicircle,it is a right triangle. PQR is divided into two right triangles by the vertical line from Q to side PR. Let PQ=x and QR=y

The larger right triangle has hypotenuse \(x\), so \(x^2 = 4 + a^2\) The smaller right triangle has hypotenuse \(y\) , so \(y^2 = 4 + b^2\)

From triangle PQR \((a+b)^2 = x^2 + y^2\), by substituting \((a+b)^2= 4+a^2 + 4+b^2\) \(a^2 + 2ab + b^2 = 8 + a^2 +b^2\) \(2ab=8 ; ab =4\)

1) if a =4 and ab=4; b must be 1 SUFFICIENT 2) if b =1 and ab=4; a must be 4 SUFFICIENT

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

15 Aug 2017, 07:00

Hi! How do we know if PQR is a right triangle?

Thanks!

Bunuel wrote:

Attachment:

Semicircle2.PNG

If arc PQR above is a semicircle, what is the length of diameter PR?

You should know the following properties to solve this question: • A right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

So, as given that PR is a diameter then angle PQR is a right angle.

• Perpendicular to the hypotenuse will always divide the triangle into two triangles with the same properties as the original triangle.

Thus, the perpendicular QT divides right triangle PQR into two similar triangles PQT and QRT (which are also similar to big triangle PQR). Now, in these three triangles the ratio of the corresponding sides will be equal (corresponding sides are the sides opposite the same angles). For example: QR/PR=QT/PQ=TR/QR. This property (sometimes along with Pythagoras) will give us the following: if we know ANY 2 values from PR, PQ, QR, PT, QT, TR then we'll be able to find other 4. We are given that QT=2 thus to find PR we need to know the length of any other line segment.

If arc PQR above is a semicircle, what is the length of diameter PR?

You should know the following properties to solve this question: • A right triangle inscribed in a circle must have its hypotenuse as the diameter of the circle. The reverse is also true: if the diameter of the circle is also the triangle’s hypotenuse, then that triangle is a right triangle.

So, as given that PR is a diameter then angle PQR is a right angle.

• Perpendicular to the hypotenuse will always divide the triangle into two triangles with the same properties as the original triangle.

Thus, the perpendicular QT divides right triangle PQR into two similar triangles PQT and QRT (which are also similar to big triangle PQR). Now, in these three triangles the ratio of the corresponding sides will be equal (corresponding sides are the sides opposite the same angles). For example: QR/PR=QT/PQ=TR/QR. This property (sometimes along with Pythagoras) will give us the following: if we know ANY 2 values from PR, PQ, QR, PT, QT, TR then we'll be able to find other 4. We are given that QT=2 thus to find PR we need to know the length of any other line segment.

(1) a = 4. Sufficient.

(2) b = 1. Sufficient.

Answer: D.

Please check the highlighted part in the solution.
_________________

Re: If arc PQR above is a semicircle, what is the length of diameter PR ? [#permalink]

Show Tags

15 Aug 2017, 10:05

1

This post received KUDOS

D clearly

Let the perpendicular to PR be M

using similar triangle Triangle PQM~ Triangle QRM using AAA property and Also Triangle PQR is right angle at Q since angle contained by diameter to the circle is 90.

PQ/QR = PM/QM = QM/RM

statement 1 is sufficient to find RM. statement 2 is sufficient to find PM.

therefore D
_________________

Give Kudos for correct answer and/or if you like the solution.

We’ve given one of our favorite features a boost! You can now manage your profile photo, or avatar , right on WordPress.com. This avatar, powered by a service...

Sometimes it’s the extra touches that make all the difference; on your website, that’s the photos and video that give your content life. You asked for streamlined access...

A lot has been written recently about the big five technology giants (Microsoft, Google, Amazon, Apple, and Facebook) that dominate the technology sector. There are fears about the...

Post today is short and sweet for my MBA batchmates! We survived Foundations term, and tomorrow's the start of our Term 1! I'm sharing my pre-MBA notes...