GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 23 Feb 2019, 03:01

### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

## Events & Promotions

###### Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
• ### Free GMAT RC Webinar

February 23, 2019

February 23, 2019

07:00 AM PST

09:00 AM PST

Learn reading strategies that can help even non-voracious reader to master GMAT RC. Saturday, February 23rd at 7 AM PT
• ### FREE Quant Workshop by e-GMAT!

February 24, 2019

February 24, 2019

07:00 AM PST

09:00 AM PST

Get personalized insights on how to achieve your Target Quant Score.

# If both x and y are integers, is (x^2 − y^2)^(1/2) an integer?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

### Hide Tags

Math Expert
Joined: 02 Sep 2009
Posts: 53066
If both x and y are integers, is (x^2 − y^2)^(1/2) an integer?  [#permalink]

### Show Tags

15 May 2017, 10:26
00:00

Difficulty:

(N/A)

Question Stats:

65% (01:15) correct 35% (01:16) wrong based on 74 sessions

### HideShow timer Statistics

If both x and y are integers, is $$\sqrt{x^2 − y^2}$$ an integer?

(1) x + y = 0

(2) x^2 − y^2 equals the cube of an integer.

_________________
SC Moderator
Joined: 13 Apr 2015
Posts: 1687
Location: India
Concentration: Strategy, General Management
GMAT 1: 200 Q1 V1
GPA: 4
WE: Analyst (Retail)
Re: If both x and y are integers, is (x^2 − y^2)^(1/2) an integer?  [#permalink]

### Show Tags

15 May 2017, 20:21
St1: $$x = -y$$ --> $$\sqrt{(x^2 - y^2)}$$= 0
Sufficient

St2: $$x^2 - y^2 = 8$$--> $$\sqrt{(x^2 - y^2)}$$ is not an integer
$$x^2 - y^2 = 64$$ --> $$\sqrt{(x^2 - y^2)}$$ is an integer
Not Sufficient

Manager
Joined: 24 Dec 2016
Posts: 96
Location: India
Concentration: Finance, General Management
WE: Information Technology (Computer Software)
Re: If both x and y are integers, is (x^2 − y^2)^(1/2) an integer?  [#permalink]

### Show Tags

15 May 2017, 20:34
Bunuel wrote:
If both x and y are integers, is $$\sqrt{x^2 − y^2}$$ an integer?

(1) x + y = 0

(2) x^2 − y^2 equals the cube of an integer.

$$\sqrt{x^2 − y^2}$$ = $$\sqrt{(x+y)(x-y)}$$
As per qsn., is $$\sqrt{(x+y)(x-y)}$$ an integer ?

Stmt 1: x+y = 0
=> $$\sqrt{x^2 − y^2}$$ = $$\sqrt{0 * (x-y)}$$ = 0
Hence, sufficient.

Stmt. 2 : $$x^2 − y^2 = I^3$$ [I= Integer]
=> $$\sqrt{x^2 − y^2}$$ = $$\sqrt{I^3}$$
Now, I can be 8 that would give the equation an integer value and can be 9 that would lead to a non integer value.
Not sufficient.

Answer should be A.
Intern
Joined: 21 Nov 2016
Posts: 37
Re: If both x and y are integers, is (x^2 − y^2)^(1/2) an integer?  [#permalink]

### Show Tags

30 Sep 2018, 20:07
We have both x and y are integers.
We need to find out is (x^2-y^2)^1/2 is an integer or not.

Statement 1 says, x+y=0
From the question we can deduce as
(x^2-y^2)^1/2 = ((x+y)(x-y))^1/2
From statement 1 we get
((x+y)(x-y))^1/2 = ((0)(x-y))^1/2
Implies, 0^1/2 = 0
So, yes (x^2-y^2)^1/2 = 0 (An integer)

Statement 1 is sufficient.
From Statement 2 we get that x^2-y^2 equals cube of an integer.
From this statement we can try x^2-y^2 with two of the most common cases

Case 1 , say x^2-y^2 = 27 which is 3^3
So (x^2-y^2)^1/2 = (3^3)^1/2 = 3^3/2 (Not an integer)

Case 2 , say x^2-y^2 = 64 which is 4^3
So, (x^2-y^2)^1/2 = (4^3)^1/2 = 64^1/2 = 8 (An integer)

So we have two contradictory cases so, statement 2 is insufficient.
So the correct option is A.
SVP
Joined: 26 Mar 2013
Posts: 2068
Re: If both x and y are integers, is (x^2 − y^2)^(1/2) an integer?  [#permalink]

### Show Tags

01 Oct 2018, 03:44
Bunuel wrote:
If both x and y are integers, is $$\sqrt{x^2 − y^2}$$ an integer?

(1) x + y = 0

(2) x^2 − y^2 equals the cube of an integer.

Let's analyze the expression:

$$\sqrt{x^2 − y^2}$$ = $$\sqrt{(x+y)(x-y)}$$

(1) x + y = 0

The expression above will always equal to zero

Sufficient.

(2) x^2 − y^2 equals the cube of an integer

Let x^2 − y^2 =0 .......................Answer is yes

Let x^2 − y^2 =1 or -1 ...............Answer is yes

Let x^2 − y^2 =27 ......................Answer is No

Insufficient

P.S.: I included different values to point put that we have quick easy values to prove yes/no answers.

Re: If both x and y are integers, is (x^2 − y^2)^(1/2) an integer?   [#permalink] 01 Oct 2018, 03:44
Display posts from previous: Sort by

# If both x and y are integers, is (x^2 − y^2)^(1/2) an integer?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.