GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 23 Sep 2018, 23:18

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49350
If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 23 Feb 2014, 07:41
43
00:00
A
B
C
D
E

Difficulty:

  25% (medium)

Question Stats:

77% (01:58) correct 23% (02:16) wrong based on 839 sessions

HideShow timer Statistics

The Official Guide For GMAT® Quantitative Review, 2ND Edition

If \(kmn\neq{0}\), is \(\frac{x}{m}*(m^2+n^2+k^2)=xm+yn+zk\)?

(1) z/k = x/m
(2) x/m = y/n

Data Sufficiency
Question: 106
Category: Algebra First- and second- degree equations
Page: 160
Difficulty: 650


GMAT Club is introducing a new project: The Official Guide For GMAT® Quantitative Review, 2ND Edition - Quantitative Questions Project

Each week we'll be posting several questions from The Official Guide For GMAT® Quantitative Review, 2ND Edition and then after couple of days we'll provide Official Answer (OA) to them along with a slution.

We'll be glad if you participate in development of this project:
1. Please provide your solutions to the questions;
2. Please vote for the best solutions by pressing Kudos button;
3. Please vote for the questions themselves by pressing Kudos button;
4. Please share your views on difficulty level of the questions, so that we have most precise evaluation.

Thank you!

_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49350
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 23 Feb 2014, 07:42
5
3
SOLUTION

If \(kmn\neq{0}\), is \(\frac{x}{m}*(m^2+n^2+k^2)=xm+yn+zk\)?

Is \(\frac{x}{m}(m^2+n^2+k^2)=xm+yn+zk\)? -->multiply both part by \(m\), to get rid of fraction part and open the brackets --> \(xm^2+xn^2+xk^2=xm^2+ynm+zkm\) --> \(xm^2\) will cancel out and the question becomes is \(xn^2+xk^2=ynm+zkm\)

(1) \(\frac{z}{k}=\frac{x}{m}\) --> \(zm=kx\) --> substitute zm with kx --> is \(xn^2+xk^2=ynm+xk^2\) --> \(xk^2\) will cancel out and the question becomes is "\(xn^2=ynm\)?" Not sufficient.

(2) \(\frac{x}{m}=\frac{y}{n}\) --> \(xn=ym\) --> substitute ym with xn --> is \(xn^2+xk^2=xn^2+zkm\) --> \(xn^2\) will cancel out and the question becomes "is \(xk^2=zkm\)?" Not sufficient.

(1)+(2) is \(xn^2+xk^2=ynm+zkm\)? --> substitute in from (1) and (2) --> is \(xn^2+xk^2=xn^2+xk^2\)? Answer is YES. Sufficient.

Answer: C.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Manager
Manager
avatar
Joined: 20 Dec 2013
Posts: 244
Location: India
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 24 Feb 2014, 03:25
1
Option C.
From S1:
the ques:Is xm+(xn^2)/m + (xk^2)/m=xm+yn+zk ?
Replacing x/m by z/k,we get
Is xm+(zn^2)/k+zk=xm+yn+zk?
Cancelling the common terms on both sides,we still can't tell whether the 2 sides are equal or not.Not suff.

From S2:Is xm+yn+(yk^2)/n=xm+yn+zk ?
Cancelling the common terms we still can't tell whether the 2 sides are equal.Not suff.

Combining the 2 terms,we can replace the terms appropriately to find they are equal.
LHS:xm +yn +zk=RHS.
Intern
Intern
User avatar
Status: Never Give up!!!
Joined: 03 Aug 2012
Posts: 48
Location: India
Concentration: Finance, General Management
GMAT ToolKit User
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 24 Feb 2014, 04:44
1
1
Simplifying the question statement given:-
x/y*(m^2+n^2+k^2)=xm+yn+zk
x/y*m^2+x/y*n^2+x/y*k^2 = xm+yn+zk

Thus simplified equation:-
xm+x/y*n^2+x/y*k^2 = xm+yn+zk

Now Statement 1:- z/k = x/m
Substituting this in the simplified equation above we get -
xm+x/y*n^2+zk = xm+yn+zk
Since no other info is provided this statement is insufficient.

Note - Looking at this itself u can figure out that the only info needed to prove both sides of the above equation equal is x/m = y/n. This can be achieved by combining both the statements. So from here itself u can directly conclude that Option (C) is the answer


Statement 2:- x/m = y/n
Substituting this in the simplified equation above we get -
xm+yn+x/y*k^2 = xm+yn+zk
Since no other info is provided this statement is insufficient.

Combining both the statements we get x/m = y/n = z/k
Substituting this in the simplified equation we get
xm+yn+zk = xm+yn+zk

Thus both sides are proved to be equal.
Hence Option (C) is the answer.

This question can be solved much faster as explained earlier since both statements are exactly the same. i.e they provide exactly half of the solution.
Intern
Intern
User avatar
Joined: 25 Jul 2014
Posts: 16
Concentration: Finance, General Management
GPA: 3.54
WE: Asset Management (Venture Capital)
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 28 Aug 2014, 13:28
2
1
I use plug in approach and find it easier to understand:

Does x/m(m^2 + n^2 + k^2) = xm + yn + zk ?

1. let z/k = 1/2 = x/m = 2/4, then the above becomes:
Does 1/2(16 + n^2 + 4) = 8 + yn + 2 -->insuficient

2. let x/m = 2/4 = y/n = 4/8, can guess that we will have something just like (1) ---> insuficient

1 and 2 together, using the plug in number, we have:
Does 1/2 (16 + 84 + 4) = 8 + 32 + 2 ---> Yes --> Answer is C
Current Student
avatar
Joined: 29 Mar 2015
Posts: 8
Concentration: Strategy, General Management
GMAT 1: 760 Q49 V44
GMAT 2: 740 Q47 V45
GPA: 3.42
WE: Other (Education)
Reviews Badge
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 09 May 2015, 23:58
Bunuel wrote:
SOLUTION

If \(kmn\neq{0}\), is \(\frac{x}{m}*(m^2+n^2+k^2)=xm+yn+zk\)?

Is \(\frac{x}{m}(m^2+n^2+k^2)=xm+yn+zk\)? -->multiply both part by \(m\), to get rid of fraction part and open the brackets --> \(xm^2+xn^2+xk^2=xm^2+ynm+zkm\) --> \(xm^2\) will cancel out and the question becomes is \(xn^2+xk^2=ynm+zkm\)

(1) \(\frac{z}{k}=\frac{x}{m}\) --> \(zm=kx\) --> substitute zm with kx --> is \(xn^2+xk^2=ynm+xk^2\) --> \(xk^2\) will cancel out and the question becomes is "\(xn^2=ynm\)?" Not sufficient.

(2) \(\frac{x}{m}=\frac{y}{n}\) --> \(xn=ym\) --> substitute ym with xn --> is \(xn^2+xk^2=xn^2+zkm\) --> \(xn^2\) will cancel out and the question becomes "is \(xk^2=zkm\)?" Not sufficient.

(1)+(2) is \(xn^2+xk^2=ynm+zkm\)? --> substitute in from (1) and (2) --> is \(xn^2+xk^2=xn^2+xk^2\)? Answer is YES. Sufficient.

Answer: C.


Since this is a DS and not a PS question, couldn't we also solve this without any calculating or simplifying?

Statement 1 does not give any information about y,
Statement 2 does not give any information about z,
Together, Statement 1 + 2 provides information about how every variable relates to one another.
Therefore, Answer: C.

Could you tell me if my reasoning is flawed?
Intern
Intern
avatar
Joined: 17 Feb 2013
Posts: 11
GMAT ToolKit User
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 31 Oct 2015, 17:06
Bunuel wrote:
SOLUTION

If \(kmn\neq{0}\), is \(\frac{x}{m}*(m^2+n^2+k^2)=xm+yn+zk\)?

Is \(\frac{x}{m}(m^2+n^2+k^2)=xm+yn+zk\)? -->multiply both part by \(m\), to get rid of fraction part and open the brackets --> \(xm^2+xn^2+xk^2=xm^2+ynm+zkm\) --> \(xm^2\) will cancel out and the question becomes is \(xn^2+xk^2=ynm+zkm\)

(1) \(\frac{z}{k}=\frac{x}{m}\) --> \(zm=kx\) --> substitute zm with kx --> is \(xn^2+xk^2=ynm+xk^2\) --> \(xk^2\) will cancel out and the question becomes is "\(xn^2=ynm\)?" Not sufficient.

(2) \(\frac{x}{m}=\frac{y}{n}\) --> \(xn=ym\) --> substitute ym with xn --> is \(xn^2+xk^2=xn^2+zkm\) --> \(xn^2\) will cancel out and the question becomes "is \(xk^2=zkm\)?" Not sufficient.

(1)+(2) is \(xn^2+xk^2=ynm+zkm\)? --> substitute in from (1) and (2) --> is \(xn^2+xk^2=xn^2+xk^2\)? Answer is YES. Sufficient.

Answer: C.


managed to do this in 25 seconds by simply seeing through that all 3 fractions are the same before the parenthesis on the left side of the equation from the stem. In visual terms, seeing this saves times ah-a lot:
Attachments

File comment: solution
Untitled.png
Untitled.png [ 18 KiB | Viewed 8500 times ]

Current Student
User avatar
B
Joined: 21 Aug 2015
Posts: 31
Location: United States (TX)
Concentration: Finance
GMAT 1: 640 Q42 V36
GMAT 2: 670 Q46 V35
GPA: 3.33
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 29 Jul 2016, 10:09
1
1
Can someone please check my work to see if this is a valid approach:

x/m (m^2 + n^2 + k^2) = xm + yn + zk --> n^2x + k^2x = mny + kmz --> n^2x - mny = kmz - k^2y --> n(nx - my) = k (mz - kx)

1) mz = kx --> mz - kx = 0
n(nx - my) = 0 --> Not Sufficient

2) nx = my --> nx - my = 0
0 = k (mz - kx) --> Not Sufficient

T) 0 = 0 --> Sufficient
Board of Directors
User avatar
V
Status: Stepping into my 10 years long dream
Joined: 18 Jul 2015
Posts: 3673
Premium Member Reviews Badge CAT Tests
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 29 Jul 2016, 10:24
charronecrom wrote:
Can someone please check my work to see if this is a valid approach:

x/m (m^2 + n^2 + k^2) = xm + yn + zk --> n^2x + k^2x = mny + kmz --> n^2x - mny = kmz - k^2y --> n(nx - my) = k (mz - kx)

1) mz = kx --> mz - kx = 0
n(nx - my) = 0 --> Not Sufficient

2) nx = my --> nx - my = 0
0 = k (mz - kx) --> Not Sufficient

T) 0 = 0 --> Sufficient


Yes, this way also you can solve this question. It's a valid approach.
_________________

My GMAT Story: From V21 to V40
My MBA Journey: My 10 years long MBA Dream
My Secret Hacks: Best way to use GMATClub | Importance of an Error Log!
Verbal Resources: All SC Resources at one place | All CR Resources at one place
Blog: Subscribe to Question of the Day Blog

GMAT Club Inbuilt Error Log Functionality - View More.
New Visa Forum - Ask all your Visa Related Questions - here.

New! Best Reply Functionality on GMAT Club!



Find a bug in the new email templates and get rewarded with 2 weeks of GMATClub Tests for free

SVP
SVP
User avatar
V
Status: Preparing for the GMAT
Joined: 02 Nov 2016
Posts: 1673
Location: Pakistan
GPA: 3.39
Premium Member CAT Tests
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 17 Sep 2017, 01:57
Bunuel wrote:
SOLUTION

If \(kmn\neq{0}\), is \(\frac{x}{m}*(m^2+n^2+k^2)=xm+yn+zk\)?

Is \(\frac{x}{m}(m^2+n^2+k^2)=xm+yn+zk\)? -->multiply both part by \(m\), to get rid of fraction part and open the brackets --> \(xm^2+xn^2+xk^2=xm^2+ynm+zkm\) --> \(xm^2\) will cancel out and the question becomes is \(xn^2+xk^2=ynm+zkm\)

(1) \(\frac{z}{k}=\frac{x}{m}\) --> \(zm=kx\) --> substitute zm with kx --> is \(xn^2+xk^2=ynm+xk^2\) --> \(xk^2\) will cancel out and the question becomes is "\(xn^2=ynm\)?" Not sufficient.

(2) \(\frac{x}{m}=\frac{y}{n}\) --> \(xn=ym\) --> substitute ym with xn --> is \(xn^2+xk^2=xn^2+zkm\) --> \(xn^2\) will cancel out and the question becomes "is \(xk^2=zkm\)?" Not sufficient.

(1)+(2) is \(xn^2+xk^2=ynm+zkm\)? --> substitute in from (1) and (2) --> is \(xn^2+xk^2=xn^2+xk^2\)? Answer is YES. Sufficient.

Answer: C.


Statement 1 does not give any information about y,
Statement 2 does not give any information about z,
Together, Statement 1 + 2 provides information about how every variable relates to one another.
Therefore, Answer: C.

Could you tell me if my reasoning is flawed?
_________________

Official PS Practice Questions
Press +1 Kudos if this post is helpful

Senior Manager
Senior Manager
User avatar
S
Status: love the club...
Joined: 24 Mar 2015
Posts: 275
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 24 Sep 2017, 07:10
abhimahna wrote:
charronecrom wrote:
Can someone please check my work to see if this is a valid approach:

x/m (m^2 + n^2 + k^2) = xm + yn + zk --> n^2x + k^2x = mny + kmz --> n^2x - mny = kmz - k^2y --> n(nx - my) = k (mz - kx)

1) mz = kx --> mz - kx = 0
n(nx - my) = 0 --> Not Sufficient

2) nx = my --> nx - my = 0
0 = k (mz - kx) --> Not Sufficient

T) 0 = 0 --> Sufficient


Yes, this way also you can solve this question. It's a valid approach.


abhimahna
hi

can you please say to me how the manipulation is done to the following ..?

"x/m (m^2 + n^2 + k^2) = xm + yn + zk --> n^2x + k^2x = mny + kmz --> n^2x - mny = kmz - k^2y "

thanks in advance...
Board of Directors
User avatar
V
Status: Stepping into my 10 years long dream
Joined: 18 Jul 2015
Posts: 3673
Premium Member Reviews Badge CAT Tests
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 24 Sep 2017, 08:58
gmatcracker2017 wrote:
abhimahna
hi

can you please say to me how the manipulation is done to the following ..?

"x/m (m^2 + n^2 + k^2) = xm + yn + zk --> n^2x + k^2x = mny + kmz --> n^2x - mny = kmz - k^2y "

thanks in advance...


Hi gmatcracker2017 ,

Here I go:

x/m (\(m^2\) +\(n^2\) + \(k^2\)) = xm + yn + zk

xm + x\(n^2\)/m + x\(k^2\)/m = xm + yn + zk

x\(n^2\)/m + x\(k^2\)/m = yn + zk

x\(n^2\) + x\(k^2\) = m ( yn + zk)

x\(n^2\) + x\(k^2\) = myn + mzk

x\(n^2\) - myn = mzk - x\(k^2\)

n ( xn - my ) = k(mz -kx)

Does that make sense?
_________________

My GMAT Story: From V21 to V40
My MBA Journey: My 10 years long MBA Dream
My Secret Hacks: Best way to use GMATClub | Importance of an Error Log!
Verbal Resources: All SC Resources at one place | All CR Resources at one place
Blog: Subscribe to Question of the Day Blog

GMAT Club Inbuilt Error Log Functionality - View More.
New Visa Forum - Ask all your Visa Related Questions - here.

New! Best Reply Functionality on GMAT Club!



Find a bug in the new email templates and get rewarded with 2 weeks of GMATClub Tests for free

Senior Manager
Senior Manager
User avatar
S
Status: love the club...
Joined: 24 Mar 2015
Posts: 275
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 24 Sep 2017, 10:09
abhimahna wrote:
gmatcracker2017 wrote:
abhimahna
hi

can you please say to me how the manipulation is done to the following ..?

"x/m (m^2 + n^2 + k^2) = xm + yn + zk --> n^2x + k^2x = mny + kmz --> n^2x - mny = kmz - k^2y "

thanks in advance...


Hi gmatcracker2017 ,

Here I go:

x/m (\(m^2\) +\(n^2\) + \(k^2\)) = xm + yn + zk

xm + x\(n^2\)/m + x\(k^2\)/m = xm + yn + zk

x\(n^2\)/m + x\(k^2\)/m = yn + zk

x\(n^2\) + x\(k^2\) = m ( yn + zk)

x\(n^2\) + x\(k^2\) = myn + mzk

x\(n^2\) - myn = mzk - x\(k^2\)

n ( xn - my ) = k(mz -kx)

Does that make sense?


hi man

I must thank you for your elaboration....

It can be seen that you have omitted "xm" from both sides, how..?
please say to me ..

thanks in advance
Board of Directors
User avatar
V
Status: Stepping into my 10 years long dream
Joined: 18 Jul 2015
Posts: 3673
Premium Member Reviews Badge CAT Tests
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 24 Sep 2017, 11:02
gmatcracker2017 wrote:
hi man

I must thank you for your elaboration....

It can be seen that you have omitted "xm" from both sides, how..?
please say to me ..

thanks in advance


Hi gmatcracker2017 ,

xm is same on both sides, hence they can be cancelled out.

It's similar to if you move xm on the RHS to LHS.

you will get xm - xm = 0

Does that make sense?
_________________

My GMAT Story: From V21 to V40
My MBA Journey: My 10 years long MBA Dream
My Secret Hacks: Best way to use GMATClub | Importance of an Error Log!
Verbal Resources: All SC Resources at one place | All CR Resources at one place
Blog: Subscribe to Question of the Day Blog

GMAT Club Inbuilt Error Log Functionality - View More.
New Visa Forum - Ask all your Visa Related Questions - here.

New! Best Reply Functionality on GMAT Club!



Find a bug in the new email templates and get rewarded with 2 weeks of GMATClub Tests for free

Senior Manager
Senior Manager
User avatar
S
Status: love the club...
Joined: 24 Mar 2015
Posts: 275
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 24 Sep 2017, 11:17
abhimahna wrote:
gmatcracker2017 wrote:
hi man

I must thank you for your elaboration....

It can be seen that you have omitted "xm" from both sides, how..?
please say to me ..

thanks in advance


Hi gmatcracker2017 ,

xm is same on both sides, hence they can be cancelled out.

It's similar to if you move xm on the RHS to LHS.

you will get xm - xm = 0

Does that make sense?


okay that's fine
how the below has been done ...?

"n^2x + k^2x "

please ...
Board of Directors
User avatar
V
Status: Stepping into my 10 years long dream
Joined: 18 Jul 2015
Posts: 3673
Premium Member Reviews Badge CAT Tests
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 24 Sep 2017, 11:26
gmatcracker2017 wrote:
okay that's fine
how the below has been done ...?

"n^2x + k^2x "

please ...


Do you know this rule? a(b+c) = ab + bc

I used the same. Multiplied x/m with the elements inside the parenthesis.

Also, do you know this?

a/b (c + d) = f can be written as a (c +d) = f * b

Try to use these rules, simplify the things and you will understand the concepts.
_________________

My GMAT Story: From V21 to V40
My MBA Journey: My 10 years long MBA Dream
My Secret Hacks: Best way to use GMATClub | Importance of an Error Log!
Verbal Resources: All SC Resources at one place | All CR Resources at one place
Blog: Subscribe to Question of the Day Blog

GMAT Club Inbuilt Error Log Functionality - View More.
New Visa Forum - Ask all your Visa Related Questions - here.

New! Best Reply Functionality on GMAT Club!



Find a bug in the new email templates and get rewarded with 2 weeks of GMATClub Tests for free

Senior Manager
Senior Manager
User avatar
S
Status: love the club...
Joined: 24 Mar 2015
Posts: 275
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 25 Sep 2017, 00:15
abhimahna wrote:
gmatcracker2017 wrote:
okay that's fine
how the below has been done ...?

"n^2x + k^2x "

please ...


Do you know this rule? a(b+c) = ab + bc

I used the same. Multiplied x/m with the elements inside the parenthesis.

Also, do you know this?

a/b (c + d) = f can be written as a (c +d) = f * b

Try to use these rules, simplify the things and you will understand the concepts.


hi

thanks a lot for your generosity ....
If you have a close look at it, you will find that the expression says " n is raised to the power (2x), and k is raised to the power (2x)" that is "n^2x + k^2x"
charronecrom equated "n^2x + k^2x with mny and kmz" and you have equated "xn^2 + xk^2 with mny and kmz"

obviously, "n^ 2x, + k^ 2x", and "xn^2 + xk^2" cannot be the same in magnitude ..
yes, now I understand, he meant (n^2) into x and (k^2) into x

thanks a lot
Intern
Intern
avatar
S
Joined: 01 Sep 2016
Posts: 6
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 22 Oct 2017, 21:46
statement 1 and statement 2 does not give a stable answer.when we combine 1 and 2,if the equality in both the statement is true,then we have yes.
What if xn^2 >ynm in statement 1.Then we might get different answer right?
Kindly clarify experts.
Intern
Intern
avatar
B
Joined: 07 Jul 2017
Posts: 10
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 29 Oct 2017, 11:47
Very useful question, tried to approach it but I had no idea how to solve it.

How did you know that you had to simplify the first equation in that specific way?
Bunuel: if I have no clue on how to manipulate the equations in order to get favorable combinations of variables, is it always the best way to simplify it in a straight way till the end?

Thanks a lot for your support!
Intern
Intern
avatar
B
Joined: 27 Apr 2015
Posts: 41
GMAT 1: 370 Q29 V13
Reviews Badge
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?  [#permalink]

Show Tags

New post 26 Dec 2017, 10:37
[quote="Bunuel"]The Official Guide For GMAT® Quantitative Review, 2ND Edition

If \(kmn\neq{0}\), is \(\frac{x}{m}*(m^2+n^2+k^2)=xm+yn+zk\)?

(1) z/k = x/m
(2) x/m = y/n

Given \(\frac{x}{m}*(m^2+n^2+k^2)=xm+yn+zk\) where \(kmn\neq{0}\)

Find Is LHS=RHS in above equation

Now LHS=\(\frac{x}{m}*(m^2+n^2+k^2)\)
=> Opening the bracket & Multiplying \(\frac{x}{m}\) to all 3 terms AND rearranging the terms we have
=> \(xm+n*\frac{xn}{m}+k*\frac{xk}{m}\)

=> Therefore if \(\frac{xn}{m}=y\) AND \(\frac{xk}{m}=z\) then LHS=RHS

Statement 1 \(\frac{z}{k} = \frac{x}{m}\)
=> OR \(z = \frac{xk}{m}\)
=> Thus 'z' known BUT 'y' NOT known
=> Therefore NOT SUFFICIENT

Statement 2 \(\frac{x}{m} = \frac{y}{n}\)
=> OR \(y = \frac{xn}{m}\)
=> Thus 'y' known BUT 'z' NOT known
=> Therefore NOT SUFFICIENT

BOTH Statment 1 & 2
=> \(z = \frac{xk}{m}\) -- from 1
=> \(y = \frac{xn}{m}\) -- from 2
=> Thus both 'y' and 'z' make LHS=RHS
=> Therefore SUFFICIENT

Therefore 'C'

Thanks
Dinesh
GMAT Club Bot
Re: If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk? &nbs [#permalink] 26 Dec 2017, 10:37

Go to page    1   2    Next  [ 24 posts ] 

Display posts from previous: Sort by

If kmn ≠ 0, is x/m*(m^2 + n^2 + k^2) = xm + yn + zk?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.