GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 24 Sep 2018, 06:39

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If line l passes through point (m, n), is the slope of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 10 Feb 2011
Posts: 109
If line l passes through point (m, n), is the slope of the  [#permalink]

Show Tags

New post 15 Feb 2011, 13:12
2
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

50% (02:12) correct 50% (01:19) wrong based on 116 sessions

HideShow timer Statistics

If line l passes through point (m,– n), is the slope of the line negative?

(1) The line passes through point (–m, n).
(2) mn is negative.
Manager
Manager
avatar
Joined: 07 Jun 2010
Posts: 81
Re: 179. If line l passes through point (m,– n), is the slope of  [#permalink]

Show Tags

New post 15 Feb 2011, 21:57
E. There are an infinite number of lines of every possible slope that can pass through a point. You need a second point to determine the slope of a line and neither question helps.
Manager
Manager
avatar
Joined: 10 Feb 2011
Posts: 109
Re: 179. If line l passes through point (m,– n), is the slope of  [#permalink]

Show Tags

New post 16 Feb 2011, 02:28
but we got 2 points here: (m,-n) and (-m, n) throw which passes a line L, no?...
Retired Moderator
avatar
Joined: 20 Dec 2010
Posts: 1868
Re: 179. If line l passes through point (m,– n), is the slope of  [#permalink]

Show Tags

New post 16 Feb 2011, 02:46
1
179. If line l passes through point (m,– n), is the slope of the line negative?
(1) The line passes through point (–m, n).
(2) mn is negative.

Use sample numbers and test:

1:
Case: I
Let's put some values for m and n
m=1
n=-1

so{m,-n} = {1,1}

statement tells us: line also passes through; {-m,n} = {-1,1}

Slope of a line passing through {1,1} and {1,-1} would be undefined.
(y2-y1)/(x2-x1) = -1-1/1-1 = -2/0 = undefined

Case II:
m=-1
n=1

so{m,-n} = {-1,-1}

statement tells us: line also passes through; {-m,n} = {1,-1}

Slope of a line passing through {-1,-1} and {1,-1} would be.
(y2-y1)/(x2-x1) = -1+1/1+1 = 0/2 = 0. Neither +ve nor -ve.


Case III:
m=1
n=1
{m,-n} = {1,-1}
{-m,n} = {-1,1}
Slope = 1+1/-1-1 = 2/-2 = -1 Negative.

case IV:
m=-1
n=-1
{m,-n} = {-1,1}
{-m,n} = {1,-1}
Slope = -1-1/1+1 = -2/2=-1 Negative

Not sufficient.

2. mn is -ve.
In the above sample set; for caseI and case2, mn is -ve and they both are yielding different signs for slopes.
Not sufficient.

Using both; caseI and caseII from statement1 will result in different types of slopes. Not Sufficient.

Ans: "E"
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

Retired Moderator
avatar
B
Joined: 16 Nov 2010
Posts: 1451
Location: United States (IN)
Concentration: Strategy, Technology
Premium Member Reviews Badge
Re: 179. If line l passes through point (m,– n), is the slope of  [#permalink]

Show Tags

New post 16 Feb 2011, 07:41
Hi

For Case I

statement tells us: line also passes through; {-m,n} = {-1,1}

Slope of a line passing through {1,1} and {1,-1} would be undefined.
(y2-y1)/(x2-x1) = -1-1/1-1 = -2/0 = undefined

n = -1, right ?

And the denominator is not equal to 0, not sure if I'm making a mistake in reading this ?
_________________

Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

GMAT Club Premium Membership - big benefits and savings

Retired Moderator
avatar
Joined: 20 Dec 2010
Posts: 1868
Re: 179. If line l passes through point (m,– n), is the slope of  [#permalink]

Show Tags

New post 16 Feb 2011, 08:01
subhashghosh wrote:
Hi

For Case I

statement tells us: line also passes through; {-m,n} = {-1,1}

Slope of a line passing through {1,1} and {1,-1} would be undefined.
(y2-y1)/(x2-x1) = -1-1/1-1 = -2/0 = undefined

n = -1, right ?

And the denominator is not equal to 0, not sure if I'm making a mistake in reading this ?


I am not sure what are you trying to ask!!!

Let me rephrase few things in caseI:

1:
Case: I

m and n can literally have any value;
Let's use the following values for m and n

m=1
n=-1

so what is {m,-n}

m=1
-n = -(-1) = +1

So; the line passes through (1,1), say point P

statement tells us: line also passes through;
{-m,n}
m=1; -m = -1
n=-1

Line also passes through (1,-1), say point Q

Slope of a line passing through two points P(1,1)=(x1,y1) and Q(1,-1)=(x2,y2) can be defined as;

m = (y2-y1)/(x2-x1)

For the above two points P and Q; what are our x1,y1,x2,y2

x1=1
y1=1
x2=1
y2=-1

(y2-y1)/(x2-x1) = -1-1/1-1 = -2/0 = if 0 is in denominator; the slope becomes undefined. Means; no slope.

You can see that this line that we are talking about passes through (1,1) and (1,-1). It is a line parallel to y axis. There is no slanting in the line and thus has no slope.
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 49417
Re: 179. If line l passes through point (m,– n), is the slope of  [#permalink]

Show Tags

New post 16 Feb 2011, 08:42
3
banksy wrote:
179. If line l passes through point (m,– n), is the slope of the line negative?
(1) The line passes through point (–m, n).
(2) mn is negative.


The slope is defined as the ratio of the "rise" divided by the "run" between two points on a line, or in other words, the ratio of the altitude change to the horizontal distance between any two points on the line. Given two points \((x_1,y_1)\) and \((x_2,y_2)\) on a line, the slope \(m\) of the line is: \(m=\frac{y_2-y_1}{x_2-x_1}\)


If line l passes through point (m,– n), is the slope of the line negative?

(1) The line passes through point (–m, n) --> \(slope=\frac{n-(-n)}{-m-m}=-\frac{n}{m}\), so the question becomes: is \(-\frac{n}{m}<0\)? or do \(m\) and \(n\) have the same sign, but we don't know that. Not sufficient.

(2) mn is negative --> \(m\) and \(n\) have the opposite signs --> point (m, -n) is either in I or in III quadrant, though as we have only one point lines passing through it can have negative as well as positive slope. Not sufficient.

(1)+(2) As from (2) \(m\) and \(n\) have the opposite signs the from (1) \(slope=-\frac{n}{m}>0\) and the answer to the question is NO. Sufficient.

Answer: C.

Without any algebra:

If line l passes through point (m,– n), is the slope of the line negative?

(1) The line passes through point (–m, n). Two cases:

A. If m and n are both positive then point (m, -n)=(positive, negative) is in IV quadrant and the second point (-m, n)=(negative, positive) is in II quadrant line passing these two points will have negative slope;

B. If m and n have the opposite signs, for example m positive and n negative, (m, -n)=(positive, positive) is in I quadrant and the second point (-m, n)=(negative, negative) is in III quadrant, line passing these two points will have positive slope (if it's vise-versa, meaning if m is negative and n positive, then we'll still have the same quadrants: (m, -n)=(negative, negative) is in III quadrant and the second point (-m, n)=(positive, positive) is in I quadrant, line passing these two points will have positive slope). Not sufficient.

(2) mn is negative --> m and n have the opposite signs --> point (m, -n) is either in I quadrant in case (m, -n)=(positive, positive) or in III quadrant in case (m, -n)=(negative, negative), though as we have only one point lines passing through it can have negative as well as positive slope. Not sufficient.

(1)+(2) As from (2) m and n have the opposite signs then we have the case B from (1), whihc means that the slope is positive. Sufficient.

Answer: C.

Check Coordinate Geometry chapter of Math Book for more: math-coordinate-geometry-87652.html
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Retired Moderator
avatar
Joined: 20 Dec 2010
Posts: 1868
Re: 179. If line l passes through point (m,– n), is the slope of  [#permalink]

Show Tags

New post 16 Feb 2011, 09:30
fluke wrote:
subhashghosh wrote:
Hi

For Case I

statement tells us: line also passes through; {-m,n} = {-1,1}

Slope of a line passing through {1,1} and {1,-1} would be undefined.
(y2-y1)/(x2-x1) = -1-1/1-1 = -2/0 = undefined

n = -1, right ?

And the denominator is not equal to 0, not sure if I'm making a mistake in reading this ?


I am not sure what are you trying to ask!!!

Let me rephrase few things in caseI:

1:
Case: I

m and n can literally have any value;
Let's use the following values for m and n

m=1
n=-1

so what is {m,-n}

m=1
-n = -(-1) = +1

So; the line passes through (1,1), say point P

statement tells us: line also passes through;
{-m,n}
m=1; -m = -1
n=-1

Line also passes through (1,-1), say point Q

Slope of a line passing through two points P(1,1)=(x1,y1) and Q(1,-1)=(x2,y2) can be defined as;

m = (y2-y1)/(x2-x1)

For the above two points P and Q; what are our x1,y1,x2,y2

x1=1
y1=1
x2=1
y2=-1

(y2-y1)/(x2-x1) = -1-1/1-1 = -2/0 = if 0 is in denominator; the slope becomes undefined. Means; no slope.

You can see that this line that we are talking about passes through (1,1) and (1,-1). It is a line parallel to y axis. There is no slanting in the line and thus has no slope.


Please ignore both my comments above; they contain calculation errors.
case I:
P should be (1,1) and Q (-1,-1)

I realized my mistake after Bunuel's explanation.
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

SVP
SVP
User avatar
Joined: 06 Sep 2013
Posts: 1801
Concentration: Finance
GMAT ToolKit User
Re: If line l passes through point (m, n), is the slope of the  [#permalink]

Show Tags

New post 28 Dec 2013, 07:21
banksy wrote:
If line l passes through point (m,– n), is the slope of the line negative?

(1) The line passes through point (–m, n).
(2) mn is negative.


Let's see

Is slope negative?

Passes through (m,-n) so actually we don't know much. Note that since 'n' is a variable it could be <0 and (m,-(-n) could as well be in the I st quadrant. So don't fall for (m,-n) being in the IV quadrant necessarily

Back to the question

Statement 1

Now if it passes through both (m,-n) and (-m,n) then the line can be either a positive line that is going from quadrant I to III or a negative line going from quadrant II to IV

Insuff

Statement 2

mn<0, this tells us that (m,n) have opposite signs. Therefore, point (m,-n) is either on the II or IV quadrant. But we know nothing about the slope of the line

Together

Since (m,-n) is on the II or IV quadrant then we have the second case in which the line has a negative slope passing through both II and IV quadrant

Hence answer is C

Hope it helps
Cheers!
J :)
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 8161
Premium Member
Re: If line l passes through point (m, n), is the slope of the  [#permalink]

Show Tags

New post 25 Aug 2018, 09:30
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Bot
Re: If line l passes through point (m, n), is the slope of the &nbs [#permalink] 25 Aug 2018, 09:30
Display posts from previous: Sort by

If line l passes through point (m, n), is the slope of the

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  

Events & Promotions

PREV
NEXT


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.