GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 06 Dec 2019, 21:51 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # If n > 4, what is the value of the integer n ?

Author Message
TAGS:

### Hide Tags

Senior Manager  G
Joined: 04 Sep 2017
Posts: 291
If n > 4, what is the value of the integer n ?  [#permalink]

### Show Tags

1
9 00:00

Difficulty:   95% (hard)

Question Stats: 48% (02:59) correct 52% (02:49) wrong based on 108 sessions

### HideShow timer Statistics

If n > 4, what is the value of the integer n ?

(1) $$\frac{n!}{(n - 3)!} = \frac{3!n!}{4!(n - 4)!}$$

(2) $$\frac{n!}{3!(n - 3)!} + \frac{n!}{4!(n - 4)!} = \frac{(n + 1)!}{4!(n - 3)!}$$

DS47661.01

_________________
Kudos
Director  V
Status: Manager
Joined: 27 Oct 2018
Posts: 746
Location: Egypt
GPA: 3.67
WE: Pharmaceuticals (Health Care)
Re: If n > 4, what is the value of the integer n ?  [#permalink]

### Show Tags

for statement (1), it can be simplified to:
$$n(n-1)(n-2) = \frac{n(n-1)(n-2)(n-3)}{4}$$
$$4 = n-3$$
$$n = 7$$ --> sufficient

for statement (2), upon simplification it will end with $$n = n$$, which means no definite value --> insufficient

A
VP  D
Joined: 19 Oct 2018
Posts: 1158
Location: India
If n > 4, what is the value of the integer n ?  [#permalink]

### Show Tags

Statement 1-
nC3=nC4
n=7

sufficient

Statement 2-

nC3+nC4= (n+1)C4
This is true for all n(>4).

{Pascal Rule- nC(k-1) + nCk= (n+1)Ck

Insufficient

gmatt1476 wrote:
If n > 4, what is the value of the integer n ?

(1) $$\frac{n!}{(n - 3)!} = \frac{3!n!}{4!(n - 4)!}$$

(2) $$\frac{n!}{3!(n - 3)!} + \frac{n!}{4!(n - 4)!} = \frac{(n + 1)!}{4!(n - 3)!}$$

DS47661.01

Originally posted by nick1816 on 18 Oct 2019, 16:30.
Last edited by nick1816 on 19 Oct 2019, 01:20, edited 1 time in total.
Intern  B
Joined: 31 Mar 2018
Posts: 13
Re: If n > 4, what is the value of the integer n ?  [#permalink]

### Show Tags

nick - Can you explain why statement B is always true ?

Posted from my mobile device
VP  D
Joined: 19 Oct 2018
Posts: 1158
Location: India
Re: If n > 4, what is the value of the integer n ?  [#permalink]

### Show Tags

You can select k items from n+1 elements in 2 ways.

Either directly select k items from n+1 elements

or

[you can select k items from n elements] + [select k-1 items from those n element and add (n+1)th item]

Dug50 wrote:
nick - Can you explain why statement B is always true ?

Posted from my mobile device
SVP  D
Joined: 03 Jun 2019
Posts: 1876
Location: India
If n > 4, what is the value of the integer n ?  [#permalink]

### Show Tags

gmatt1476 wrote:
If n > 4, what is the value of the integer n ?

(1) $$\frac{n!}{(n - 3)!} = \frac{3!n!}{4!(n - 4)!}$$

(2) $$\frac{n!}{3!(n - 3)!} + \frac{n!}{4!(n - 4)!} = \frac{(n + 1)!}{4!(n - 3)!}$$

DS47661.01

If n > 4, what is the value of the integer n ?

(1) $$\frac{n!}{(n - 3)!} = \frac{3!n!}{4!(n - 4)!}$$
1/(n-3) = 3!/4! = 1/4
n-3 =4
n=7
SUFFICIENT

(2) $$\frac{n!}{3!(n - 3)!} + \frac{n!}{4!(n - 4)!} = \frac{(n + 1)!}{4!(n - 3)!}$$
n!/4!(n-3)! [4 + n-3] = n!/4!(n-3)! (n+1) = (n+1)!/4!(n-3)!
Always true for all values of n except n=3
NOT SUFFICIENT

IMO A
Math Expert V
Joined: 02 Aug 2009
Posts: 8281
If n > 4, what is the value of the integer n ?  [#permalink]

### Show Tags

If n > 4, what is the value of the integer n ?

(1) $$\frac{n!}{(n - 3)!} = \frac{3!n!}{4!(n - 4)!}$$
Two ways..
(a) Combination formula
$$\frac{n!}{(n - 3)!} = \frac{3!n!}{4!(n - 4)!}$$.....$$\frac{n!}{3!(n - 3)!} = \frac{n!}{4!(n - 4)!}.....nC3=nC4$$
Thus $$n=3+4=7$$..SUFF
(b) Arithmetic way
$$\frac{n!}{(n - 3)!} = \frac{3!n!}{4!(n - 4)!}$$.......$$\frac{n(n-1)(n-2)(n-3)!}{(n - 3)!} = \frac{3!n(n-1)(n-2)(n-3)(n-4)!}{4!(n - 4)!}$$....$$4!*n(n-1)(n-2)=3!*(n)(n-1)(n-2)(n-3).....4=n-3...n=7..SUFF$$

(2) $$\frac{n!}{3!(n - 3)!} + \frac{n!}{4!(n - 4)!} = \frac{(n + 1)!}{4!(n - 3)!}$$
Two ways..
(a) Combination formula

$$\frac{n!}{3!(n - 3)!} + \frac{n!}{4!(n - 4)!} = \frac{(n + 1)!}{4!(n - 3)!}$$.....$$.....nC3+nC4=(n+1)C4$$
Thus n could be anything as it is true for all..SUFF
(b) Arithmetic way
$$\frac{n!}{3!(n - 3)!} + \frac{n!}{4!(n - 4)!} = \frac{(n + 1)!}{4!(n - 3)!}$$ ......
Take out n!/3!(n-3)!
$$\frac{n!}{3!(n-3)!}(1+\frac{n-3}{4} )=\frac{n!}{3!(n-3)!}(\frac{n+1}{4} ).....\frac{n+1}{4}=\frac{n+1}{4}$$....Always true..
This also tells us why nC3+nC4=(n+1)C4

A
_________________ If n > 4, what is the value of the integer n ?   [#permalink] 19 Oct 2019, 01:05
Display posts from previous: Sort by

# If n > 4, what is the value of the integer n ?  