May 24 10:00 PM PDT  11:00 PM PDT Join a FREE 1day workshop and learn how to ace the GMAT while keeping your fulltime job. Limited for the first 99 registrants. May 25 07:00 AM PDT  09:00 AM PDT Attend this webinar and master GMAT SC in 10 days by learning how meaning and logic can help you tackle 700+ level SC questions with ease. May 27 01:00 AM PDT  11:59 PM PDT All GMAT Club Tests are free and open on May 27th for Memorial Day! May 27 10:00 PM PDT  11:00 PM PDT Special savings are here for Magoosh GMAT Prep! Even better  save 20% on the plan of your choice, now through midnight on Tuesday, 5/27 May 30 10:00 PM PDT  11:00 PM PDT Application deadlines are just around the corner, so now’s the time to start studying for the GMAT! Start today and save 25% on your GMAT prep. Valid until May 30th.
Author 
Message 
TAGS:

Hide Tags

Manager
Joined: 25 Jul 2010
Posts: 102

If n is a nonnegative integer such that 12^n is a divisor
[#permalink]
Show Tags
Updated on: 29 Mar 2013, 02:41
Question Stats:
63% (01:34) correct 37% (01:55) wrong based on 518 sessions
HideShow timer Statistics
If n is a nonnegative integer such that 12^n is a divisor of 3,176,793, what is the value of n^1212^n? A. 11 B. 1 C. 0 D. 1 E. 11
Official Answer and Stats are available only to registered users. Register/ Login.
Originally posted by Orange08 on 18 Sep 2010, 12:48.
Last edited by Bunuel on 29 Mar 2013, 02:41, edited 2 times in total.
Edited the question




Math Expert
Joined: 02 Sep 2009
Posts: 55273

Re: Divisor of 3,176,793
[#permalink]
Show Tags
18 Sep 2010, 20:11
Orange08 wrote: If n is a nonnegative integer such that 12n is a divisor of 3,176,793, what is the value of n^12 – 12^n ?
a. 11 b. 1 c. 0 d. 1 e. 11 If the answer is B then I think it should be \(12^n\) instead of \(12n\) So the question would be: If n is a nonnegative integer such that 12^n is a divisor of 3,176,793, what is the value of n^1212^n?3,176,793 is an odd number. The only way it to be a multiple of \(12^n\) (even number in integer power) is when \(n=0\), in this case \(12^n=12^0=1\) and 1 is a factor of every integer. Then \(n^{12}12^n=0^{12}12^0=1\). Answer: B. Hope it helps.
_________________




Retired Moderator
Joined: 02 Sep 2010
Posts: 759
Location: London

Re: Divisor of 3,176,793
[#permalink]
Show Tags
18 Sep 2010, 13:00
3176793 is odd 12n is even How can 12n be a divisor ? The only answer I can think is n=0 which means 1 But I don't think you can count 0 as a "divisor"
_________________



Manager
Joined: 25 Jul 2010
Posts: 102

Re: Divisor of 3,176,793
[#permalink]
Show Tags
18 Sep 2010, 13:06
Precisely, for this reason, I have posted this question here. I am unclear is 0 should be considered as divisor.



Retired Moderator
Joined: 02 Sep 2010
Posts: 759
Location: London

Re: Divisor of 3,176,793
[#permalink]
Show Tags
Updated on: 18 Sep 2010, 16:50
Orange08 wrote: Precisely, for this reason, I have posted this question here. I am unclear is 0 should be considered as divisor. What's the source of the question ? I am sure the only possible answer is 1, just not sure about the validity of the question
_________________
Originally posted by shrouded1 on 18 Sep 2010, 13:10.
Last edited by shrouded1 on 18 Sep 2010, 16:50, edited 1 time in total.



Manager
Joined: 17 Feb 2011
Posts: 143
Concentration: Real Estate, Finance
Schools: MIT (Sloan)  Class of 2014

Re: Divisor of 3,176,793
[#permalink]
Show Tags
25 Feb 2011, 09:56
Nice question!
Bunuel's approach is very good.
Thanks!



Intern
Joined: 14 Feb 2011
Posts: 4

Re: Divisor of 3,176,793
[#permalink]
Show Tags
25 Feb 2011, 22:22
Thanks Bunnel's for this in depth explanation!!



Manager
Joined: 27 Oct 2011
Posts: 128
Location: United States
Concentration: Finance, Strategy
GPA: 3.7
WE: Account Management (Consumer Products)

12^n will always be an even number because it will be a multiple of 12. however 3,176,793 is odd and there is no case when a positive number of n would be a factor of 3,176,793. Only number that would match is when n is zero.
_________________
DETERMINED TO BREAK 700!!!



Verbal Forum Moderator
Joined: 10 Oct 2012
Posts: 611

Re: If n is a nonnegative integer such that 12n is a divisor of
[#permalink]
Show Tags
28 Mar 2013, 22:12
nave81 wrote: If n is a nonnegative integer such that \(12^n\) is a divisor of 3,176,793, what is the value of n^12  12^n?
A. 11 B.  1 C. 0 D. 1 E. 11 n is any integer \(>=0\). Also, \(12^n\) is a divisor of the given number. \(12^0\) = 1 is a divisor of the given number. Replacing n = 0 in the given expression, we have 0^12  12^0 = 1. Note that for any other value of n, there will be a factor of 2 in \(12^n\). But the given number is odd and thus, has no factor of 2. Therefore, any other power of 12, can not be a divisor of the given number. B.
_________________



VP
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1051
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8

Re: If n is a nonnegative integer such that 12n is a divisor of
[#permalink]
Show Tags
29 Mar 2013, 00:24
nave81 wrote: If n is a nonnegative integer such that \(12^n\) is a divisor of 3,176,793, what is the value of n^12  12^n?
A. 11 B.  1 C. 0 D. 1 E. 11 The only way that \(12^n\) can be a divisor of 3 is if \(n=0, 12^0=1\). So \(n=0\) 0^(12)  12^0=01=1 B
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason Tips and tricks: Inequalities , Mixture  Review: MGMAT workshop Strategy: SmartGMAT v1.0  Questions: Verbal challenge SC III CR New SC set out !! , My QuantRules for Posting in the Verbal Forum  Rules for Posting in the Quant Forum[/size][/color][/b]



Director
Joined: 29 Nov 2012
Posts: 740

Re: Divisor of 3,176,793
[#permalink]
Show Tags
05 Jul 2013, 09:08
3,176,793 is an odd number. The only way it to be a multiple of \(12^n\) (even number in integer power) is when \(n=0\), in this case \(12^n=12^0=1\) and 1 is a factor of every integer.
Can you elaborate on this.. The sum of the digits add up to 9 the only example I thought of 12^2 = 144
does sum of the digits have any relation to this question or it isn't related?



Math Expert
Joined: 02 Sep 2009
Posts: 55273

Re: Divisor of 3,176,793
[#permalink]
Show Tags
05 Jul 2013, 09:17
fozzzy wrote: 3,176,793 is an odd number. The only way it to be a multiple of \(12^n\) (even number in integer power) is when \(n=0\), in this case \(12^n=12^0=1\) and 1 is a factor of every integer.
Can you elaborate on this.. The sum of the digits add up to 9 the only example I thought of 12^2 = 144
does sum of the digits have any relation to this question or it isn't related? No, the sum of the digits is not relevant for this question. 3,176,793 is an odd number. An odd number cannot be a multiple of any even number, and 12^n is even for any positive integer n. Therefore n cannot be positive which means that n can only be 0. Hope it's clear. Similar question to practice: newtoughandtrickyexponentsandrootsquestions12595640.html#p1029223
_________________



Manager
Joined: 26 Jan 2015
Posts: 77

Re: If n is a nonnegative integer such that 12^n is a divisor
[#permalink]
Show Tags
09 Mar 2016, 11:36
Bunuel wrote: fozzzy wrote: 3,176,793 is an odd number. The only way it to be a multiple of \(12^n\) (even number in integer power) is when \(n=0\), in this case \(12^n=12^0=1\) and 1 is a factor of every integer.
Can you elaborate on this.. The sum of the digits add up to 9 the only example I thought of 12^2 = 144
does sum of the digits have any relation to this question or it isn't related? No, the sum of the digits is not relevant for this question. 3,176,793 is an odd number. An odd number cannot be a multiple of any even number, and 12^n is even for any positive integer n. Therefore n cannot be positive which means that n can only be 0. Hope it's clear. Similar question to practice: newtoughandtrickyexponentsandrootsquestions12595640.html#p1029223Hi Bunuel, I did not notice that the number given is odd and do the thinking in mind. Rather I read the Q and understood that 12^n should be a divisor on the huge number. 1 is a divisor of the number. and 12^0=1 and hence n=0 satisfies the Q. So I realized that n&^1212^n = 1. if I follow this approach, Will I face a pit fall in any other question similar to this one?
_________________
Kudos is the best way to say Thank you! Please give me a kudos if you like my post



Manager
Joined: 20 Jun 2016
Posts: 61

Re: If n is a nonnegative integer such that 12^n is a divisor
[#permalink]
Show Tags
20 Aug 2017, 22:46
0^anything=0 anything^0=1 Therefore the only value for n=0. Answer : 01=1(B)
_________________
Life is a challenge face it.



CEO
Joined: 12 Sep 2015
Posts: 3726
Location: Canada

Re: If n is a nonnegative integer such that 12^n is a divisor
[#permalink]
Show Tags
17 Jan 2018, 16:53
Orange08 wrote: If n is a nonnegative integer such that 12^n is a divisor of 3,176,793, what is the value of n^1212^n?
A. 11 B. 1 C. 0 D. 1 E. 11 First notice the big hint right from the start: n is a nonnegative integerYour first reaction should be " Why not just tell us that n is positive?" The reason is that the testmaker wants to include zero as a possible value for n (and zero is neither positive nor negative). Since the testmaker went to the trouble to keep zero as a possible value for n, let's check to see whether n = 0 works. Well, 12^ 0 = 1, and 1 is a divisor of 3,176,793. So n must equal 0. Now that we know the value of n, we can evaluate n^12  12^n n^12  12^n = 0^12  12^ 0 = 0  1 = 1 Answer: B Cheers, Brent
_________________
Test confidently with gmatprepnow.com



EMPOWERgmat Instructor
Status: GMAT Assassin/CoFounder
Affiliations: EMPOWERgmat
Joined: 19 Dec 2014
Posts: 14198
Location: United States (CA)

Re: If n is a nonnegative integer such that 12^n is a divisor
[#permalink]
Show Tags
08 Mar 2018, 12:10
Hi All, This question is built around a number of interesting Number Property rules. Here's how you can use those rules to avoid doing a lot of 'math' on this question. 12^N implies that we're probably dealing with an EVEN number (unless N = 0, in which 12^0 = 1). But we're told that 12^N is a divisor of 3,176,793, which is a big ODD number. EVEN numbers DO NOT divide evenly into ODD numbers, so N CANNOT be a positive number. Since we're told that N is A NONNEGATIVE INTEGER, the only other possibility is when N = 0. Knowing this, the rest of the math is fairly straightforward: (0^12)  (12^0) = 0  1 = 1 Final Answer: GMAT assassins aren't born, they're made, Rich
_________________
760+: Learn What GMAT Assassins Do to Score at the Highest Levels Contact Rich at: Rich.C@empowergmat.com*****Select EMPOWERgmat Courses now include ALL 6 Official GMAC CATs!*****
Rich Cohen
CoFounder & GMAT Assassin
Special Offer: Save $75 + GMAT Club Tests Free
Official GMAT Exam Packs + 70 Pt. Improvement Guarantee www.empowergmat.com/



NonHuman User
Joined: 09 Sep 2013
Posts: 11007

Re: If n is a nonnegative integer such that 12^n is a divisor
[#permalink]
Show Tags
18 Mar 2019, 14:11
Hello from the GMAT Club BumpBot! Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up  doing my job. I think you may find it valuable (esp those replies with Kudos). Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________




Re: If n is a nonnegative integer such that 12^n is a divisor
[#permalink]
18 Mar 2019, 14:11






