Bunuel wrote:

If x and y are integers and xy ≠ 0, is x - y > 0?

(1) x/y < 1/2

(2) \(\sqrt{x^2}= x\) and \(\sqrt{y^2} = y\)

\(\left( * \right)\,\,\,\,x,y\,\,\, \ne 0\,\,\,\,{\rm{ints}}\,\,\,\,\left( {xy \ne 0} \right)\,\,\,\,\)

\(x\,\,\mathop > \limits^? \,\,y\)

\(\left( 1 \right)\,\,{x \over y} < {1 \over 2}\,\,\,\,\left\{ \matrix{

\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {1,3} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr

\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( { - 1, - 3} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\)

\(\left( 2 \right)\,\,\,\left\{ \matrix{

\,\left| x \right| = x\,\,\,\, \Rightarrow \,\,\,\,x \ge 0\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,x > 0 \hfill \cr

\,\left| y \right| = y\,\,\,\, \Rightarrow \,\,\,\,y \ge 0\,\,\,\,\mathop \Rightarrow \limits^{\left( * \right)} \,\,\,\,y > 0 \hfill \cr} \right.\,\,\,\,\,\,\,\,\,\,\,\,;\,\,\,\,\,\,\,\,\,\,\,\,\left\{ \matrix{

\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {1,2} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr

\,{\rm{Take}}\,\,\left( {x,y} \right) = \left( {2,1} \right)\,\,\,\, \Rightarrow \,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.\,\)

\(\left( {1 + 2} \right)\,\,\,\,\,\left\{ \matrix{

\,\,{x \over y} < {1 \over 2}\,\,\,\,\,\mathop \Rightarrow \limits_{y\, > \,\,0}^{ \cdot \,\,2y} \,\,\,\,\,2x < y \hfill \cr

\,\,\,1 < 2\,\,\,\,\,\mathop \Rightarrow \limits_{\,x\, > \,\,0}^{ \cdot \,\,x} \,\,\,\,\,\,\,x < 2x \hfill \cr} \right.\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,x < 2x < y\,\,\,\,\,\, \Rightarrow \,\,\,\,\,x < y\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\,\)

This solution follows the notations and rationale taught in the GMATH method.

Regards,

Fabio.

_________________

Fabio Skilnik :: GMATH method creator (Math for the GMAT)

Our high-level "quant" preparation starts here: https://gmath.net