GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 18 Oct 2018, 22:08

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

If x and y are integers, is x^y<y^x ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Manager
Manager
avatar
Joined: 24 Nov 2010
Posts: 178
Location: United States (CA)
Concentration: Technology, Entrepreneurship
Schools: Ross '15, Duke '15
GMAT ToolKit User
If x and y are integers, is x^y<y^x ?  [#permalink]

Show Tags

New post 10 Jun 2011, 07:27
1
6
00:00
A
B
C
D
E

Difficulty:

  95% (hard)

Question Stats:

44% (02:01) correct 56% (01:59) wrong based on 183 sessions

HideShow timer Statistics

If x and y are integers, is x^y<y^x ?

(1) x^y= 16
(2) x and y are consecutive even integers.
Intern
Intern
avatar
Joined: 16 Apr 2010
Posts: 28
Location: United States (AL)
Concentration: Technology, Entrepreneurship
GMAT 1: 680 Q44 V37
GPA: 3.91
WE: Information Technology (Energy and Utilities)
Re: Another exponent question  [#permalink]

Show Tags

New post 10 Jun 2011, 07:42
I would say that the asnwer is A.

From 1, we can say have the following combinations.
x=2, y=4. Ans: Not greater
x=4, y=2. Ans: Not greater
x=16, y=1. Ans: Not greater

All three possibilities of combination gives us a consistent answer as 'No'. Therefore A is sufficient.

What is the OA?
Retired Moderator
avatar
Joined: 20 Dec 2010
Posts: 1835
Re: Another exponent question  [#permalink]

Show Tags

New post 10 Jun 2011, 09:09
jaizen wrote:
I would say that the asnwer is A.

From 1, we can say have the following combinations.
x=2, y=4. Ans: Not greater
x=4, y=2. Ans: Not greater
x=16, y=1. Ans: Not greater

All three possibilities of combination gives us a consistent answer as 'No'. Therefore A is sufficient.

What is the OA?


What if:
x=-2, y=4
x=-4, y=2
_________________

~fluke

GMAT Club Premium Membership - big benefits and savings

Intern
Intern
avatar
Joined: 16 Apr 2010
Posts: 28
Location: United States (AL)
Concentration: Technology, Entrepreneurship
GMAT 1: 680 Q44 V37
GPA: 3.91
WE: Information Technology (Energy and Utilities)
Re: Another exponent question  [#permalink]

Show Tags

New post 10 Jun 2011, 09:24
1
fluke wrote:
jaizen wrote:
I would say that the asnwer is A.

From 1, we can say have the following combinations.
x=2, y=4. Ans: Not greater
x=4, y=2. Ans: Not greater
x=16, y=1. Ans: Not greater

All three possibilities of combination gives us a consistent answer as 'No'. Therefore A is sufficient.

What is the OA?


What if:
x=-2, y=4
x=-4, y=2


I forgot to include signs. Well, since (1) says that the x^y = 16, this means that y has to be a positive, even number. So we can add two more combinations.
x=-4, y=2
x=-2, y=4

The answer still holds.
Intern
Intern
avatar
Joined: 16 Apr 2010
Posts: 28
Location: United States (AL)
Concentration: Technology, Entrepreneurship
GMAT 1: 680 Q44 V37
GPA: 3.91
WE: Information Technology (Energy and Utilities)
Re: Another exponent question  [#permalink]

Show Tags

New post 10 Jun 2011, 09:39
My very first kudo! This is special... thank you fluke. :-D
Manager
Manager
avatar
Joined: 24 Nov 2010
Posts: 178
Location: United States (CA)
Concentration: Technology, Entrepreneurship
Schools: Ross '15, Duke '15
GMAT ToolKit User
Re: If x and y are integers, is x^y<y^x ? (1) x^y = 16 (2) x  [#permalink]

Show Tags

New post 24 Dec 2011, 10:45
1
guys, i was looking at this again.. and the OA seems debatable.

the question does not say if x<y or not.

so for 1, if x=16 and y = 1 then \(x^y\) = 16 and \(y^x\) = 1.
then \(x^y\) > \(y^x\)
but if y=16 and x =1 then \(x^y\) = 1 and \(y^x\) = 16. and \(x^y\) < \(y^x\).

so A is not sufficient.

combining the 2 statements, the only possibility will be (x,y) = (4,2) and (2,4). in both cases however, \(x^y\) = \(y^x\) and the ans to the question will be a No.
So i think the ans to this question should be C.

please let me know if i'm missing something.
Manager
Manager
avatar
Joined: 04 Dec 2011
Posts: 66
Schools: Smith '16 (I)
GMAT ToolKit User
Re: If x and y are integers, is x^y<y^x ? (1) x^y = 16 (2) x  [#permalink]

Show Tags

New post 24 Dec 2011, 12:44
\(\)

mmm..even i was confused, a bit..:)
X^Y can be -4^2, -2^4, 2^4 or 16^1
but in all cases above y^X is smaller than 16...so i guess its A
In DS problem any concrete answer YES or NO can be an answer so i guess we do have an answer here..
_________________

Life is very similar to a boxing ring.
Defeat is not final when you fall down…
It is final when you refuse to get up and fight back!

1 Kudos = 1 thanks
Nikhil

Senior Manager
Senior Manager
avatar
Joined: 28 Jul 2011
Posts: 370
Location: United States
Concentration: International Business, General Management
GPA: 3.86
WE: Accounting (Commercial Banking)
Re: If x and y are integers, is x^y<y^x ? (1) x^y = 16 (2) x  [#permalink]

Show Tags

New post Updated on: 03 Jan 2012, 19:36
Guys initially marked but now confused.....

1. it will satisfy for both

x=4, y=2 and x=2 y=4 ....the value is not greater But for x=16 y=1 X^Y>Y^X so we are getting two answers....so then how can the answer be A????????? :?

Can anyone please explain????
_________________

+1 Kudos If found helpful..


Originally posted by mydreammba on 24 Dec 2011, 18:52.
Last edited by mydreammba on 03 Jan 2012, 19:36, edited 1 time in total.
Intern
Intern
avatar
Joined: 01 Jan 2012
Posts: 6
Concentration: Strategy, Operations
GMAT 1: 700 Q49 V35
GPA: 3.8
Re: If x and y are integers, is x^y<y^x ? (1) x^y = 16 (2) x  [#permalink]

Show Tags

New post 01 Jan 2012, 11:26
I feel it is c. Because different values of X and Y are giving different relations.

Lets se, X=2, Y=4 then x^y=y^x

if we have x=16, y=1, then x^y > y^x

So, I feel C is correct answer.
CEO
CEO
User avatar
Status: Nothing comes easy: neither do I want.
Joined: 12 Oct 2009
Posts: 2605
Location: Malaysia
Concentration: Technology, Entrepreneurship
Schools: ISB '15 (M)
GMAT 1: 670 Q49 V31
GMAT 2: 710 Q50 V35
Reviews Badge
Re: If x and y are integers, is x^y<y^x ? (1) x^y = 16 (2) x  [#permalink]

Show Tags

New post 01 Jan 2012, 12:32
1
dreambeliever wrote:
guys, i was looking at this again.. and the OA seems debatable.

the question does not say if x<y or not.

so for 1, if x=16 and y = 1 then \(x^y\) = 16 and \(y^x\) = 1.
then \(x^y\) > \(y^x\)
but if y=16 and x =1 then \(x^y\) = 1 and \(y^x\) = 16. and \(x^y\) < \(y^x\).

so A is not sufficient.

combining the 2 statements, the only possibility will be (x,y) = (4,2) and (2,4). in both cases however, \(x^y\) = \(y^x\) and the ans to the question will be a No.
So i think the ans to this question should be C.

please let me know if i'm missing something.


you dont need to know whether x>y.

there are 3 possibilities for statement 1.
x=2 y =4
x=4 y=2
x=16 y=1
for all three the answer to the question is NO. so it is sufficient.
_________________

Fight for your dreams :For all those who fear from Verbal- lets give it a fight

Money Saved is the Money Earned :)

Jo Bole So Nihaal , Sat Shri Akaal

:thanks Support GMAT Club by putting a GMAT Club badge on your blog/Facebook :thanks

GMAT Club Premium Membership - big benefits and savings

Gmat test review :
http://gmatclub.com/forum/670-to-710-a-long-journey-without-destination-still-happy-141642.html

Manager
Manager
User avatar
Joined: 29 Jul 2011
Posts: 92
Location: United States
Re: If x and y are integers, is x^y<y^x ? (1) x^y = 16 (2) x  [#permalink]

Show Tags

New post 07 Jan 2012, 16:21
1. x^y = 16. Only possible relationship is x=4,y=2. In this case x^y=y^x. Suff.
2. Say x=2, y=3, we get 2^3<3^2. Say x=3, y=4, we get 3^4>4^3. Insuff.

A
_________________

I am the master of my fate. I am the captain of my soul.
Please consider giving +1 Kudos if deserved!

DS - If negative answer only, still sufficient. No need to find exact solution.
PS - Always look at the answers first
CR - Read the question stem first, hunt for conclusion
SC - Meaning first, Grammar second
RC - Mentally connect paragraphs as you proceed. Short = 2min, Long = 3-4 min

Manager
Manager
avatar
Joined: 03 Oct 2009
Posts: 52
Re: If x and y are integers, is x^y<y^x ? (1) x^y = 16 (2) x  [#permalink]

Show Tags

New post 18 Jan 2012, 12:37
If x and y are integers, is x^y<y^x ?
(1) x^y = 16
(2) x and y are consecutive even integers.


(1) x^y = 16
x y can be
2 4
4 2
16 1

not sufficient.


(2) x and y are consecutive even integers.
we don't know whether x > y or y > x.

not sufficient


1 + 2

x y can be
2 4 => x^y = 16 and y^x = 16
4 2 => x^y = 16 and y^x = 16
0 2 => x^y = 0 and y^x = 1
-2 -4 => x^y = 1/16 and y^x = 1/16

not sufficient.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50000
Re: If x and y are integers, is x^y<y^x? (1) x^y=16  [#permalink]

Show Tags

New post 18 Jan 2012, 13:54
1
If x and y are integers, is x^y<y^x?

We have an YES/NO data sufficiency question. In a Yes/No Data Sufficiency question, each statement is sufficient if the answer is “always yes” or “always no” while a statement is insufficient if the answer is "sometimes yes" and "sometimes no".

(1) \(x^y=16\), since \(x\) and \(y\) are integers then following cases are possible:
\(x=-4\) and \(y=2\) --> \(x^y=16>\frac{1}{16}=y^x\) --> the answer to the question is NO;
\(x=-2\) and \(y=4\) --> \(x^y=16>\frac{1}{16}=y^x\) --> the answer to the question is NO;
\(x=2\) and \(y=4\) --> \(x^y=16=y^x\) --> the answer to the question is NO;
\(x=4\) and \(y=2\) --> \(x^y=16=y^x\) --> the answer to the question is NO;
\(x=16\) and \(y=1\) --> \(x^y=16>1=y^x\) --> the answer to the question is NO.

As you can see in ALL 5 possible cases the answer to the question "is \(x^y<y^x\)?" is NO. Thus this statement is sufficient.

(2) x and y are consecutive even integers --> if \(x=2\) and \(y=4\) the answer will be NO but if \(x=0\) and \(y=2\) the answer will be YES. Not sufficient.

Answer: A.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Manager
Manager
avatar
Joined: 22 Apr 2011
Posts: 145
Schools: Mccombs business school, Mays business school, Rotman Business School,
DS  [#permalink]

Show Tags

New post 07 Jun 2012, 21:40
If x and y are integers, is x^y < y^x ?
(1) x^y = 16
(2) x and y are consecutive even integers.


according to statement 1 the possible pair of x and y would be (16, 1), (1, 16), (2,4), (4,2)

2^4=4^2 in this case the answer is no

if x= 1 then 1^16<16^1 in this case the answer is yes
if x=16 then 16^1>1^16 in this case the answer is No

so statement 1 is insufficient . am i right or am i missing something?
_________________

some people are successful, because they have been fortunate enough and some people earn success, because they have been determined.....

please press kudos if you like my post.... i am begging for kudos...lol

Current Student
avatar
Joined: 21 Apr 2011
Posts: 14
Re: DS  [#permalink]

Show Tags

New post 07 Jun 2012, 21:59
alchemist009 wrote:


according to statement 1 the possible pair of x and y would be (16, 1), (1, 16), (2,4), (4,2)


You are wrong: For the statement 1, the possible is (2,4) or (4,2) only.
1^16=1 not 16.
Manager
Manager
avatar
Joined: 22 Apr 2011
Posts: 145
Schools: Mccombs business school, Mays business school, Rotman Business School,
Re: DS  [#permalink]

Show Tags

New post 07 Jun 2012, 22:55
yep i got now. i am just missing the x^y= 16 part.
_________________

some people are successful, because they have been fortunate enough and some people earn success, because they have been determined.....

please press kudos if you like my post.... i am begging for kudos...lol

Current Student
User avatar
B
Joined: 29 Mar 2012
Posts: 316
Location: India
GMAT 1: 640 Q50 V26
GMAT 2: 660 Q50 V28
GMAT 3: 730 Q50 V38
GMAT ToolKit User
Re: DS  [#permalink]

Show Tags

New post 07 Jun 2012, 23:37
Hi,

Since it is mentioned that x and y are integers.
\(x^y = 16\) gives following solution,
(x,y) = (-4,2), (-2,4), (2,4), (4,2) & (16,1)

to check \(x^y < y^x\) using above values of (x,y)
\(16 = (-4)^2\)
\(16 = (-2)^4\)
\(16 = (2)^4\)
\(16 = (4)^2\)
\(16 = (16)^1\)

Although the answer is same (i.e, (A)), but I want to emphasis on the fact that all the cases should be considered.
This would help in other DS questions.
Intern
Intern
avatar
B
Joined: 10 Sep 2017
Posts: 10
Concentration: Operations, Organizational Behavior
GMAT ToolKit User
Re: If x and y are integers, is x^y<y^x ?  [#permalink]

Show Tags

New post 02 Nov 2017, 00:59
The answer must be C because
the two of the conditions derived from the first equation is sufficient when x=2 or 4. But what about the value of x as 16.
Please correct the answer.
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50000
Re: If x and y are integers, is x^y<y^x ?  [#permalink]

Show Tags

New post 02 Nov 2017, 01:23
Jashan79 wrote:
The answer must be C because
the two of the conditions derived from the first equation is sufficient when x=2 or 4. But what about the value of x as 16.
Please correct the answer.


It's not clear what you mean at all. The answer is A, not C. Please check the discussion. For example, this post: https://gmatclub.com/forum/if-x-and-y-a ... l#p1030984
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

GMAT Club Bot
Re: If x and y are integers, is x^y<y^x ? &nbs [#permalink] 02 Nov 2017, 01:23
Display posts from previous: Sort by

If x and y are integers, is x^y<y^x ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.