It is currently 20 Jan 2018, 07:11

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Events & Promotions

Events & Promotions in June
Open Detailed Calendar

If x represents the number of positive factors of integer y, is x odd

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

1 KUDOS received
Current Student
User avatar
Joined: 03 Jul 2013
Posts: 92

Kudos [?]: 227 [1], given: 14

Schools: ISB '17 (A), IIMC (A)
GMAT 1: 660 Q48 V32
If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 02 Oct 2014, 19:39
1
This post received
KUDOS
15
This post was
BOOKMARKED
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

53% (00:53) correct 47% (00:45) wrong based on 280 sessions

HideShow timer Statistics

If x represents the number of positive factors of integer y, is x odd?

(1) y = n! where n is a positive integer greater than 1
(2) y = m^2 − 1 where m is a positive integer greater than 1
[Reveal] Spoiler: OA

_________________

Sometimes standing still can be, the best move you ever make......

Kudos [?]: 227 [1], given: 14

1 KUDOS received
Current Student
User avatar
Joined: 03 Jul 2013
Posts: 92

Kudos [?]: 227 [1], given: 14

Schools: ISB '17 (A), IIMC (A)
GMAT 1: 660 Q48 V32
Re: If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 02 Oct 2014, 19:42
1
This post received
KUDOS
My Aprproach:

Statement 1)

when n=2, y=2, factors of 2 are 1,2 so x=2
when n=3, y=6, factors of 6 are 1,2,3,6 so x=4
n=4,y=24, factors of y are 1,2,3,4,6,8,12,24 x= 8


hence x can never be odd. Sufficient.

Statement 2)

m=2, y=1, factors of y =1, so x=1
m=3, y=8, factors of y=1,2,4,8 x=4

Insufficient as x can be even or odd.

IMO A but it doesnt match the official answer. Bunuel please help.
_________________

Sometimes standing still can be, the best move you ever make......

Kudos [?]: 227 [1], given: 14

1 KUDOS received
Current Student
User avatar
Joined: 02 Jul 2012
Posts: 211

Kudos [?]: 306 [1], given: 84

Location: India
Schools: IIMC (A)
GMAT 1: 720 Q50 V38
GPA: 2.6
WE: Information Technology (Consulting)
Reviews Badge
Re: If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 02 Oct 2014, 22:48
1
This post received
KUDOS
1
This post was
BOOKMARKED
aadikamagic wrote:
If x represents the number of positive factors of integer y, is x odd?

y=n! where n is a positive integer greater than 1

y=m^2−1 where m is a positive integer greater than 1


a) Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked
b) Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient to answer the question asked
c) Both statements (1) and (2) TOGETHER are sufficient to answer the question asked; but NEITHER statement ALONE is sufficient
d) EACH statement ALONE is sufficient to answer the question asked
e) Statements (1) and (2) TOGETHER are NOT sufficient to answer the question asked, and additional data specific to the problem are needed



Y = n! = Since n > 1, What ever be the number, the number of factors of n! will always be even. Here's how:

For any number n, n! = 1 * 2 * 3 * 4.... n

No. of factors of 1 = 1 i.e 1
No. of factors of 2 = 2 i.e 1, 2
No. of factors of 3 = 2 i.e 1, 3
etc. etc.

This would mean that what ever be the numbers ahead and what ever be their number of factors (Even / Odd), they would always be multiplied by an even number. Since the number of factors are calculated by multiplying the number of factors of each prime factor.

So, A will lead to a answer Yes.

Now the correct answer to this question will either be A or D. To analyze it, lets look at choice B.

y=m^2−1 m>1

y = (m + 1) (m - 1)
This too will always lead to an even choice since either of m + 1 and m - 1 will have even number of factors.

Therefore, this can be answered by using either of choices.

Ans. D :done
_________________

Give KUDOS if the post helps you... :-D

Kudos [?]: 306 [1], given: 84

Expert Post
4 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43334

Kudos [?]: 139559 [4], given: 12794

Re: If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 02 Oct 2014, 23:59
4
This post received
KUDOS
Expert's post
14
This post was
BOOKMARKED
If x represents the number of positive factors of integer y, is x odd?

The question asks whether the number of factors of y is odd. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square. So, the question asks whether y is a perfect square.

(1) y = n! where n is a positive integer greater than 1. Among factorials, only 0! and 1! are perfect squares. So, y is not. Sufficient.

(2) y = m^2 − 1 where m is a positive integer greater than 1 --> y is 1 less, than a perfect square, so not a perfect square (two positive consecutive integers cannot both be prefect squares). Sufficient.

Answer: D.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139559 [4], given: 12794

Intern
Intern
avatar
Joined: 12 Sep 2014
Posts: 4

Kudos [?]: [0], given: 60

Re: If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 03 Oct 2014, 11:07
Bunuel wrote:
If x represents the number of positive factors of integer y, is x odd?

The question asks whether the number of factors of y is odd. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square. So, the question asks whether y is a perfect square.

(1) y = n! where n is a positive integer greater than 1. Among factorials, only 0! and 1! are perfect squares. So, y is not. Sufficient.

(2) y = m^2 − 1 where m is a positive integer greater than 1 --> y is 1 less, than a perfect square, so not a perfect square (two positive consecutive integers cannot both be prefect squares). Sufficient.

Answer: D.


That's a nice explaination .

Kudos [?]: [0], given: 60

Current Student
User avatar
Joined: 03 Jul 2013
Posts: 92

Kudos [?]: 227 [0], given: 14

Schools: ISB '17 (A), IIMC (A)
GMAT 1: 660 Q48 V32
Re: If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 03 Oct 2014, 11:24
Bunuel wrote:
If x represents the number of positive factors of integer y, is x odd?

The question asks whether the number of factors of y is odd. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square. So, the question asks whether y is a perfect square.

(1) y = n! where n is a positive integer greater than 1. Among factorials, only 0! and 1! are perfect squares. So, y is not. Sufficient.

(2) y = m^2 − 1 where m is a positive integer greater than 1 --> y is 1 less, than a perfect square, so not a perfect square (two positive consecutive integers cannot both be prefect squares). Sufficient.

Answer: D.



Thanks bunuel but could you please tell me what was the issue with my approach so that ill be careful on exam day
_________________

Sometimes standing still can be, the best move you ever make......

Kudos [?]: 227 [0], given: 14

Expert Post
2 KUDOS received
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 43334

Kudos [?]: 139559 [2], given: 12794

If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 03 Oct 2014, 11:26
2
This post received
KUDOS
Expert's post
aadikamagic wrote:
My Aprproach:

Statement 1)

when n=2, y=2, factors of 2 are 1,2 so x=2
when n=3, y=6, factors of 6 are 1,2,3,6 so x=4
n=4,y=24, factors of y are 1,2,3,4,6,8,12,24 x= 8


hence x can never be odd. Sufficient.

Statement 2)

m=2, y=1, factors of y =1, so x=1
m=3, y=8, factors of y=1,2,4,8 x=4

Insufficient as x can be even or odd.

IMO A but it doesnt match the official answer. Bunuel please help.


(2) y = m^2 − 1 where m is a positive integer greater than 1

If m = 2, then y = 2^2 - 1 = 3, not 1. Factors of 3 are 1 and 3.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

Kudos [?]: 139559 [2], given: 12794

Current Student
User avatar
Joined: 03 Jul 2013
Posts: 92

Kudos [?]: 227 [0], given: 14

Schools: ISB '17 (A), IIMC (A)
GMAT 1: 660 Q48 V32
Re: If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 03 Oct 2014, 11:27
Bunuel wrote:
aadikamagic wrote:
My Aprproach:

Statement 1)

when n=2, y=2, factors of 2 are 1,2 so x=2
when n=3, y=6, factors of 6 are 1,2,3,6 so x=4
n=4,y=24, factors of y are 1,2,3,4,6,8,12,24 x= 8


hence x can never be odd. Sufficient.

Statement 2)

m=2, y=1, factors of y =1, so x=1
m=3, y=8, factors of y=1,2,4,8 x=4

Insufficient as x can be even or odd.

IMO A but it doesnt match the official answer. Bunuel please help.


(2) y = m^2 − 1 where m is a positive integer greater than 1

If m = 2, then y = 2^2 - 1 = 3, not 1. Factors of 3 are 1 and 3.


Ohh god I feel so stupid now. Thanks a ton man.
_________________

Sometimes standing still can be, the best move you ever make......

Kudos [?]: 227 [0], given: 14

Intern
Intern
avatar
B
Joined: 24 Aug 2015
Posts: 23

Kudos [?]: 4 [0], given: 12

Location: Israel
GMAT 1: 740 Q49 V41
GPA: 3.32
Re: If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 30 Aug 2015, 06:16
Bunuel wrote:
If x represents the number of positive factors of integer y, is x odd?

The question asks whether the number of factors of y is odd. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square. So, the question asks whether y is a perfect square.

(1) y = n! where n is a positive integer greater than 1. Among factorials, only 0! and 1! are perfect squares. So, y is not. Sufficient.

(2) y = m^2 − 1 where m is a positive integer greater than 1 --> y is 1 less, than a perfect square, so not a perfect square (two positive consecutive integers cannot both be prefect squares). Sufficient.

Answer: D.



Sorry guys, I just don't get it.
Take 36 for example - 36= 2^2*3^2.
Two prime, distinct factors.

It must be some weird terminology issue, I would be glad if someone could explain this to me (Taking the GMAT on wednsday!)

Thanks in advance.

Kudos [?]: 4 [0], given: 12

3 KUDOS received
Current Student
avatar
S
Joined: 20 Mar 2014
Posts: 2685

Kudos [?]: 1847 [3], given: 800

Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44
GPA: 3.7
WE: Engineering (Aerospace and Defense)
GMAT ToolKit User Premium Member Reviews Badge
If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 30 Aug 2015, 06:29
3
This post received
KUDOS
1
This post was
BOOKMARKED
goidelg wrote:
Bunuel wrote:
If x represents the number of positive factors of integer y, is x odd?

The question asks whether the number of factors of y is odd. The number of distinct factors of a perfect square is ALWAYS ODD. The reverse is also true: if a number has the odd number of distinct factors then it's a perfect square. So, the question asks whether y is a perfect square.

(1) y = n! where n is a positive integer greater than 1. Among factorials, only 0! and 1! are perfect squares. So, y is not. Sufficient.

(2) y = m^2 − 1 where m is a positive integer greater than 1 --> y is 1 less, than a perfect square, so not a perfect square (two positive consecutive integers cannot both be prefect squares). Sufficient.

Answer: D.



Sorry guys, I just don't get it.
Take 36 for example - 36= 2^2*3^2.
Two prime, distinct factors.

It must be some weird terminology issue, I would be glad if someone could explain this to me (Taking the GMAT on wednsday!)

Thanks in advance.


Look below:

For any given number, N, the number of factors of N are as follows:

N = a^p * b^q * c^r .... Where a,b,c are prime number (=2,3,5,7,11...) and p,q,r are integers. This should always be the first step.

Writing N in terms of its prime factors is known as prime factorization.

Once you have done the prime factorization, the number of factors of N= (p+1)(q+1)(r+1)... (Please note that the formula for number of factors include 1 and the number itself as well.)

What you are confusing is the definition of

1. Prime factors
2. Positive factors

You are correct that 36 has 2 prime factors but for positive factors, you need to use the formula mentioned above.

So once you write 36 = \(2^2\)*\(3^2\), you need to take the powers of the prime factors (2 and 3 in this case) and calculate (power of 2 +1)(power of 3 +1) = (2+1)(2+1) = 3*3 = 9, an odd number.

By counting, the factors of 36 are:
1 36
2 18
3 12
4 9
6 6 (so in all you have 9 factors, with 6 only counted ONCE).

The above property of total factors to be odd are especially true for perfect squares. The reverse is true as well.

Thus, for a perfect square, the total number of positive factors will always be ODD while number with ODD number of positive factors will ALWAYS be perfect squares (25,36,49, etc)

Hope this helps.

Kudos [?]: 1847 [3], given: 800

Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 14219

Kudos [?]: 291 [0], given: 0

Premium Member
Re: If x represents the number of positive factors of integer y, is x odd [#permalink]

Show Tags

New post 20 Nov 2017, 10:47
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

Kudos [?]: 291 [0], given: 0

Re: If x represents the number of positive factors of integer y, is x odd   [#permalink] 20 Nov 2017, 10:47
Display posts from previous: Sort by

If x represents the number of positive factors of integer y, is x odd

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


GMAT Club MBA Forum Home| About| Terms and Conditions| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.