Bunuel
If |x−y|=y, what is the value of x?
(1) xy>0
(2) y=6
VERY beautiful problem, Bunuel. (Kudos!)
\(? = x\)
\(\left| {x - y} \right| = y\,\,\,\,\,\, \Rightarrow \,\,\,\,\,y \geqslant 0\,\,\,\,\,\,\,\,{\text{AND}}\,\,\,\,\,\,\,\left\{ \begin{gathered}\\
\,\,x = 0\,\,\,,\,\,\,y \geqslant 0\,\,\,{\text{free}} \hfill \\\\
\,\,{\text{OR}}\,\,\,\, \hfill \\\\
0 \ne x\,\,,\,\,\,{\text{0}}\,\,\mathop {\text{ < }}\limits^{\left( * \right)} \,\,{\text{dist}}\left( {x,y} \right) = {\text{dist}}\left( {y,0} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,0 < y < x = 2y \hfill \\ \\
\end{gathered} \right.\)
\(\left( * \right)\,\,\,0 \ne x = y\,\,\,\,\, \Rightarrow \,\,\,\,\,0 = \left| {x - y} \right| = y = x\,\,\,\,{\text{impossible}}\,\,\,\)
\(\left( 1 \right)\,\,\,xy > 0\,\,\,\,\left\{ \begin{gathered}\\
\,{\text{Take}}\,\,\left( {x,y} \right) = \left( {2,1} \right)\,\,\,\, \Rightarrow \,\,\,{\text{?}}\,\,{\text{ = }}\,\,{\text{2}}\,\, \hfill \\\\
\,{\text{Take}}\,\,\left( {x,y} \right) = \left( {4,2} \right)\,\,\,\, \Rightarrow \,\,\,{\text{?}}\,\,{\text{ = }}\,\,{\text{4}}\,\, \hfill \\ \\
\end{gathered} \right.\)
\(\left( 2 \right)\,\,\,y = 6\,\,\,\,\left\{ \begin{gathered}\\
\,{\text{Take}}\,\,\left( {x,y} \right) = \left( {0,6} \right)\,\,\,\, \Rightarrow \,\,\,{\text{?}}\,\,{\text{ = }}\,\,{\text{0}}\,\, \hfill \\\\
\,{\text{Take}}\,\,\left( {x,y} \right) = \left( {12,6} \right)\,\,\,\, \Rightarrow \,\,\,{\text{?}}\,\,{\text{ = }}\,\,{\text{12}}\,\, \hfill \\ \\
\end{gathered} \right.\)
\(\left( {1 + 2} \right)\,\,\,\,\,\left\{ \begin{gathered}\\
\,x \ne 0 \hfill \\\\
\,y = 6 \hfill \\ \\
\end{gathered} \right.\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,? = x = 2y = 12\,\,\,\,\, \Rightarrow \,\,\,\,\,{\text{SUFF}}.\)
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.