Last visit was: 20 Jun 2025, 15:22 It is currently 20 Jun 2025, 15:22
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
Chemerical71
Joined: 09 Jan 2016
Last visit: 01 Sep 2020
Posts: 77
Own Kudos:
447
 [65]
Given Kudos: 61
GPA: 3.4
WE:General Management (Human Resources)
Posts: 77
Kudos: 447
 [65]
3
Kudos
Add Kudos
62
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
sashiim20
Joined: 04 Dec 2015
Last visit: 05 Jun 2024
Posts: 614
Own Kudos:
1,791
 [31]
Given Kudos: 276
Location: India
Concentration: Technology, Strategy
WE:Information Technology (Consulting)
23
Kudos
Add Kudos
8
Bookmarks
Bookmark this Post
User avatar
BrentGMATPrepNow
User avatar
Major Poster
Joined: 12 Sep 2015
Last visit: 13 May 2024
Posts: 6,757
Own Kudos:
33,884
 [26]
Given Kudos: 799
Location: Canada
Expert
Expert reply
Posts: 6,757
Kudos: 33,884
 [26]
12
Kudos
Add Kudos
14
Bookmarks
Bookmark this Post
General Discussion
User avatar
effatara
Joined: 09 Nov 2015
Last visit: 17 Jul 2024
Posts: 197
Own Kudos:
416
 [6]
Given Kudos: 96
Posts: 197
Kudos: 416
 [6]
4
Kudos
Add Kudos
2
Bookmarks
Bookmark this Post
The two solutions posted above are based on the assumption that there is a consistent relationship between each of the divisors and the corresponding remainder (divisor is 1 more than remainder in each case). But what if this is not the case? To illustrate this, I have composed an identical problem but with different values for divisors and remainders:

"A certain number is successively divided by 2, 3 & 4 (the factors of 24) and the remainders are 1, 2 & 0 respectively. What will the remainder be if the number is divided outright by 24?"

As you can see, there is no discernible pattern between the divisors and remainders. My solution (which can be applied to all problems of this nature) is:

Let N be the number and Q1, Q2 & Q3 be the quotients for the first, second and third divisions respectively.
2Q1 + 1=N ........ (i)
3Q2 + 2=Q1 ...... (ii)
4Q3 + 0=Q2 .......(iii)
We also know that 24Q + R=N where Q is the quotient and R is the remainder when the number N is divided outright by 24. Now, it is a fact that when a number 'n' is successively divided by the factors of another number 'd', the last quotient is the same as the quotient when 'n' is divided outright by 'd'. This can easily be proved algebraically or verified by some simple examples (for instance, n=18, d=6, d1=2 and d2=3).
Therefore, 24Q3 + R=N
From (ii) and (iii), we can deduce that Q3=(Q1-2)/12
Thus, 24(Q1-2)/12 +R=N ......(iv)
So, from (iv) and (i), we have: 2(Q1-2) + R=2Q1 + 1; R=5. (N=53, Q1=26, Q2=8 and Q3=2)

This approach will also yield the correct result (remainder=584) when applied to the original problem. Hope I have been able to provide a clear explanation.
User avatar
Pritishd
User avatar
UNC Kenan Flagler Moderator
Joined: 18 Jul 2015
Last visit: 20 Feb 2024
Posts: 235
Own Kudos:
285
 [3]
Given Kudos: 120
GMAT 1: 530 Q43 V20
WE:Analyst (Consumer Packaged Goods)
GMAT 1: 530 Q43 V20
Posts: 235
Kudos: 285
 [3]
3
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Chemerical71
In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively. If he had divided the number by 585, the remainder would have been

A. 24
B. 144
C. 288
D. 292
E. 584

While the above methods are crisp, clear and to-the-point, I would like to share the method of solving backwards from answer choices, which may be helpful in case you are not able to think of any of the above approaches.

Let the unknown number be \(x\)

'If he had divided the number by 585' - Then the equation would be \(x=585q+r,\) where \(q\) is the quotient and \(r\) is the remainder. And hence \(r\) would be one of the 5 answer choices. For sake of simplicity lets assume \(q\) to be equal to 1.

While checking the answer choices we need to check if the resulting number leaves a remainder of 4, 8 and 12 when divided by 5, 9 and 13

A. \(585*1 + 24 = 609\) - Does not leave 8 as the remainder when divided by 9 as 603 is the closest multiple to 609. Eliminate
B. \(585*1 + 144 = 729\) - Is divisible by 9 and hence leaves 0 as the remainder instead of 8. Eliminate
C. \(585*1+ 288 = 873\) - The closest multiple of 5 to 873 is 870 which leaves remainder of 3 instead of 4. Eliminate
D. \(585*1 + 292 = 877\) - Again, the closest multiple of 5 to 875 is 877 which leaves remainder of 2 instead of 4. Eliminate

This leaves us with only 1 choice and we can mark it without making any calculations.

Ans. E
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 20 Jun 2025
Posts: 20,982
Own Kudos:
26,033
 [1]
Given Kudos: 293
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 20,982
Kudos: 26,033
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Chemerical71
In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively. If he had divided the number by 585, the remainder would have been

A. 24
B. 144
C. 288
D. 292
E. 584

We see that each remainder is 1 less than its respective divisor (4 is 1 less than 5, 8 is 1 less than 9, and 12 is 1 less than 13). Therefore, when the number is divided by 585, the remainder will be 1 less than 585, which is 584.

Answer: E
avatar
wishmasterdj
Joined: 04 May 2016
Last visit: 25 Oct 2021
Posts: 94
Own Kudos:
34
 [1]
Given Kudos: 10
Location: India
Schools: ISB '18 (A)
GMAT 1: 700 Q48 V37
GPA: 3.2
Schools: ISB '18 (A)
GMAT 1: 700 Q48 V37
Posts: 94
Kudos: 34
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
ScottTargetTestPrep
Chemerical71
In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively. If he had divided the number by 585, the remainder would have been

A. 24
B. 144
C. 288
D. 292
E. 584

We see that each remainder is 1 less than its respective divisor (4 is 1 less than 5, 8 is 1 less than 9, and 12 is 1 less than 13). Therefore, when the number is divided by 585, the remainder will be 1 less than 585, which is 584.

Answer: E

Can you explain why it would be so?
User avatar
ScottTargetTestPrep
User avatar
Target Test Prep Representative
Joined: 14 Oct 2015
Last visit: 20 Jun 2025
Posts: 20,982
Own Kudos:
26,033
 [1]
Given Kudos: 293
Status:Founder & CEO
Affiliations: Target Test Prep
Location: United States (CA)
Expert
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 20,982
Kudos: 26,033
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
wishmasterdj
ScottTargetTestPrep
Chemerical71
In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively. If he had divided the number by 585, the remainder would have been

A. 24
B. 144
C. 288
D. 292
E. 584

We see that each remainder is 1 less than its respective divisor (4 is 1 less than 5, 8 is 1 less than 9, and 12 is 1 less than 13). Therefore, when the number is divided by 585, the remainder will be 1 less than 585, which is 584.

Answer: E

Can you explain why it would be so?

Response:

Let X be the number. X is divided successively by 5, 9 and 13 and the remainders are 4, 8 and 12, respectively. This can be expressed algebraically as follows:

X = 5k + 4

k = 9s + 8

s = 13t + 12

Here, k, s, and t are quotients obtained from the divisions. Let’s add 1 to each side of the equality X = 5k + 4:

X + 1 = 5k + 4 + 1 = 5k + 5 = 5(k + 1)

Let’s substitute 9s + 8 for k:

X + 1 = 5(k + 1) = 5(9s + 8 + 1) = 5(9s + 9) = 5 * 9(s + 1)

Let’s substitute 13t + 12 for s:

X + 1 = 5 * 9(13t + 12 + 1) = 5 * 9(13t + 13) = 5 * 9 * 13(t + 1)

We see that X + 1 is divisible by 5 * 9 * 13 = 585. Since X + 1 is divisible by 585, the remainder when X is divided by 585 must be 584.

This shows that when the remainders are 1 less than the divisors, adding 1 to the number will result in a multiple of all the divisors. Thus, when the number is divided by the product of the divisors, the remainder will be 1 less than the number.
User avatar
BrushMyQuant
Joined: 05 Apr 2011
Last visit: 12 Jun 2025
Posts: 2,225
Own Kudos:
Given Kudos: 100
Status:Tutor - BrushMyQuant
Location: India
Concentration: Finance, Marketing
Schools: XLRI (A)
GMAT 1: 700 Q51 V31
GPA: 3
WE:Information Technology (Computer Software)
Expert
Expert reply
Schools: XLRI (A)
GMAT 1: 700 Q51 V31
Posts: 2,225
Kudos: 2,444
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Given that a student divided a number by 585 using the method of short division. And he successively divided the number by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively. And we need to find the remainder when the he divided the number by 585

He divided 585 by 5, 9 and 13 successively to get the remainders of 4, 8 and 12. Let's try to find the number by going in the reverse direction

Divided a number by 13 to get get 12 remainder

Theory: Dividend = Divisor*Quotient + Remainder

Number -> Dividend
13 -> Divisor
a -> Quotient (Assume)
12 -> Remainders
=> Number which was divided by 13 = 13*a + 12 = 13a + 12

Divided something by 9 to get 13a + 12 as quotient and 8 as remainder
=> Number which was divided by 9 = 9*(13a + 12) + 8 = 117a + 108 + 8 = 117a + 116

Divided something by 5 to get 117a + 116 as quotient and 4 as remainder
=> Actual Number = 5*(117a + 116) + 4 = 585a + 580 + 4 = 585a + 584

Remainder when Actual Number is divided by 585

585a + 584 when divided by 585 will give 584 as remainder

So, Answer will be E
Hope it helps!

Watch the following video to learn the Basics of Remainders

User avatar
Kinshook
User avatar
Major Poster
Joined: 03 Jun 2019
Last visit: 19 Jun 2025
Posts: 5,614
Own Kudos:
5,103
 [1]
Given Kudos: 161
Location: India
GMAT 1: 690 Q50 V34
WE:Engineering (Transportation)
Products:
GMAT 1: 690 Q50 V34
Posts: 5,614
Kudos: 5,103
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
Given: In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively.

Asked: If he had divided the number by 585, the remainder would have been

Let the number be x.

x = 5k + 4
k = 9m + 8
m = 13n + 12

x = 5(9(13n+12)+8)+4 = 585n + 540 + 40 + 4 = 585n + 584

IMO E
User avatar
samarpan.g28
Joined: 08 Dec 2023
Last visit: 20 Jun 2025
Posts: 320
Own Kudos:
Given Kudos: 1,234
Location: India
Concentration: Strategy, Operations
GPA: 8.88
WE:Engineering (Technology)
Products:
Posts: 320
Kudos: 98
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Let the number be n.
(((5n+4)9+8)13+12)=585n+584. Therefore, the remainder is 584(E).
User avatar
bumpbot
User avatar
Non-Human User
Joined: 09 Sep 2013
Last visit: 04 Jan 2021
Posts: 37,234
Own Kudos:
Posts: 37,234
Kudos: 1,001
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
Moderators:
Math Expert
102214 posts
PS Forum Moderator
653 posts