GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 16 Feb 2019, 09:41

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel
Events & Promotions in February
PrevNext
SuMoTuWeThFrSa
272829303112
3456789
10111213141516
17181920212223
242526272812
Open Detailed Calendar
  • Free GMAT Algebra Webinar

     February 17, 2019

     February 17, 2019

     07:00 AM PST

     09:00 AM PST

    Attend this Free Algebra Webinar and learn how to master Inequalities and Absolute Value problems on GMAT.
  • Free GMAT Strategy Webinar

     February 16, 2019

     February 16, 2019

     07:00 AM PST

     09:00 AM PST

    Aiming to score 760+? Attend this FREE session to learn how to Define your GMAT Strategy, Create your Study Plan and Master the Core Skills to excel on the GMAT.

In dividing a number by 585, a student employed the method of short di

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

 
Manager
Manager
User avatar
G
Joined: 09 Jan 2016
Posts: 107
GPA: 3.4
WE: General Management (Human Resources)
In dividing a number by 585, a student employed the method of short di  [#permalink]

Show Tags

New post 01 Jul 2017, 07:08
13
00:00
A
B
C
D
E

Difficulty:

  75% (hard)

Question Stats:

56% (02:20) correct 44% (02:26) wrong based on 147 sessions

HideShow timer Statistics

In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively. If he had divided the number by 585, the remainder would have been

A. 24
B. 144
C. 288
D. 292
E. 584
Most Helpful Community Reply
Director
Director
User avatar
D
Joined: 04 Dec 2015
Posts: 740
Location: India
Concentration: Technology, Strategy
Schools: ISB '19, IIMA , IIMB, XLRI
WE: Information Technology (Consulting)
GMAT ToolKit User
Re: In dividing a number by 585, a student employed the method of short di  [#permalink]

Show Tags

New post 01 Jul 2017, 07:20
6
1
Chemerical71 wrote:
In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively. If he had divided the number by 585, the remainder would have been

A. 24
B. 144
C. 288
D. 292
E. 584


Let the number be \(x\).

\(x\) is successively divided by \(5\), \(9\) and \(13\) (factors \(585\)) and got the remainders \(4\), \(8\), \(12\) respectively.

Difference of all the divisors and remainders respectively is \(1\).

\(Divisor - Remainder = 1\)

\(5-4 = 1\)

\(9-8 = 1\)

\(13-12 = 1\)

Therefore; \(585 - Remainder = 1\)

\(Remainder = 585 - 1 = 584\)

Answer (E)...

_________________
Please Press "+1 Kudos" to appreciate. :)
General Discussion
CEO
CEO
User avatar
D
Joined: 11 Sep 2015
Posts: 3431
Location: Canada
Re: In dividing a number by 585, a student employed the method of short di  [#permalink]

Show Tags

New post 25 Oct 2017, 10:10
Top Contributor
2
Chemerical71 wrote:
In dividing a number by 585, a student employed the method of short division. He divided the number successively by 5, 9 and 13 (factors 585) and got the remainders 4, 8, 12 respectively. If he had divided the number by 585, the remainder would have been

A. 24
B. 144
C. 288
D. 292
E. 584


----ASIDE----------------------------
There's a nice rule that say, "If N divided by D equals Q with remainder R, then N = DQ + R"
For example, since 17 divided by 5 equals 3 with remainder 2, then we can write 17 = (5)(3) + 2
Likewise, since 53 divided by 10 equals 5 with remainder 3, then we can write 53 = (10)(5) + 3
----------------------------------------

Let N = the number in question

First notice that each remainder is 1 less than the divisor.
When we divide N by 5, the remainder is 4 (one less than 5).
When we divide N by 9, the remainder is 8 (one less than 9).
When we divide N by 13, the remainder is 12 (one less than 13).
This tells us that N+1 is divisible by 5, 9 and 13.
Here's why...

When we divide by 5, the remainder is 4.
Applying the above rule, we can write: N = 5k + 4 (for some integer k)
So: N+1 = 5k + 4 + 1
Simplify to get: N+1 = 5k + 5
Factor to get: N+1 = 5(k + 1)
In other words, N+1 is divisible by 5

We can apply the same steps to show that:
N+1 is divisible by 9
N+1 is divisible by 13

If N+1 is divisible by 5, 9 and 13, we know that N+1 is divisible by 585 (the product of 5, 9 and 13)
So, one possible value of N+1 is 585
If N + 1 = 585, then N = 584

If he had divided the number by 585, the remainder would have been?
584 divided by 585 equals zero with remainder 584
Answer:

RELATED VIDEO

_________________

Test confidently with gmatprepnow.com
Image

Intern
Intern
avatar
B
Joined: 09 Nov 2015
Posts: 33
Re: In dividing a number by 585, a student employed the method of short di  [#permalink]

Show Tags

New post 20 Nov 2017, 00:46
1
The two solutions posted above are based on the fact that there is a consistent relationship between each of the divisors and the corresponding remainder (divisor is 1 more than remainder in each case). But what if this is not the case? To illustrate this, I have composed an identical problem but with different values for divisors and remainders:

"A certain number is successively divided by 2, 3 & 4 (the factors of 24) and the remainders are 1, 2 & 0 respectively. What will the remainder be if the number is divided outright by 24?"

As you can see, there is no discernible pattern between the divisors and remainders. My solution (which can be applied to all problems of this nature) is:

Let N be the number and Q1, Q2 & Q3 be the quotients for the first, second and third divisions respectively.
2Q1 + 1=N ........ (i)
3Q2 + 2=Q1 ...... (ii)
4Q3 + 0=Q2 .......(iii)
We also know that 24Q + R=N where Q is the quotient and R is the remainder when the number N is divided outright by 24. Now, it is a fact that when a number 'n' is successively divided by the factors of another number 'd', the last quotient is the same as the quotient when 'n' is divided outright by 'd'. This can easily be proved algebraically or verified by some simple examples (for instance, n=18, d=6, d1=2 and d2=3).
Therefore, 24Q3 + R=N
From (ii) and (iii), we can deduce that Q3=(Q1-2)/12
Thus, 24(Q1-2)/12 +R=N ......(iv)
So, from (iv) and (i), we have: 2(Q1-2) + R=2Q1 + 1; R=5. (N=53, Q1=26, Q2=8 and Q3=2)

This approach will also yield the correct result (remainder=584) when applied to the original problem. Hope I have been able to provide a clear explanation.
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 9835
Premium Member
Re: In dividing a number by 585, a student employed the method of short di  [#permalink]

Show Tags

New post 17 Jan 2019, 23:08
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Bot
Re: In dividing a number by 585, a student employed the method of short di   [#permalink] 17 Jan 2019, 23:08
Display posts from previous: Sort by

In dividing a number by 585, a student employed the method of short di

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.