The possible combinations are:
118 --> with 3 rearrangements ( because 1 is repeated, the possibilities = \(\frac{3!}{2!} = 3\))
127 --> with 6 rearrangements (because all numbers are different, the possibilities = \(3! = 6\))
136 --> with 6 rearrangements
145 --> with 6 rearrangements
226 --> with 3 rearrangements
235 --> with 6 rearrangements
244 --> with 3 rearrangements
334 --> with 3 rearrangements
Total = 36
Another faster way is the
"Stars and Bars Theorem", which says that for n items distributed on k elements, where each of the elements must have a positive value, then the number of possibilities = (n-1)C(k-1).
and in our case, it will be (10-1)C(3-1) = 9C2 = 36