tusharGupta1 wrote:
In how many ways can 5 different marbles be distributed in 4 identical pockets?
a) 24
b) 51
c) 120
d) 625
e) 1024
The solution to your problem is given below. It distributes 5 distinct fruits into 4 identical baskets.
5 fruits can be split into 4 groups in the following ways: {5, 0, 0, 0}, {4, 1, 0, 0}, {3, 2, 0, 0}, {3, 1, 1, 0}, {2, 2, 1, 0}, {2, 1, 1, 1}
Does it concern us that the baskets are identical? It does. Let’s see how.
{5, 0, 0, 0} means that one basket has all 5 fruits and the rest of the 3 baskets are empty. It doesn’t matter which basket has the fruits because all the baskets are identical. So, this gives us 1 way of distributing the fruits.
{4, 1, 0, 0} means that one basket has 4 fruits, another has the leftover 1 fruit and the other 2 baskets have no fruit. The lone fruit can be chosen in 5 ways. The rest of the 4 fruits will be together in another basket and 2 baskets will be empty. This gives us 5 different ways of distributing the fruits.
{3, 2, 0, 0} means that one basket has 3 fruits, another has the leftover 2 fruits and the other 2 baskets have no fruit. The 3 fruits can be chosen in 5*4*3/3! = 10 ways (= 5C3). The rest of the 2 fruits will be together in another basket in one way and 2 baskets will be empty. This gives us 10 different ways of distributing the fruits.
{3, 1, 1, 0} means that one basket has 3 fruits, another two have a fruit each and the leftover basket has no fruit. The 3 fruits can be chosen in 5*4*3/3! = 10 ways (= 5C3). The rest of the 2 fruits will be in two baskets in one way (since the baskets are all identical) and the last basket will be empty. This gives us 10 different ways of distributing the fruits.
{2, 2, 1, 0} means that 2 baskets have 2 fruits each, one basket has one fruit and the last basket is empty. We can select 1 fruit out of 5 in 5 ways. Now we are left with 4 fruits which have to be split into 2 groups of 2 each. This can be done in 4!/2!*2!*2! = 3 ways (We have already discussed this concept in the post on Groups. Check out the initial theory and question no. 2) This gives us 5*3 = 15 different ways of distributing the fruits.
{2, 1, 1, 1} means that one basket has 2 fruits and the rest of the 3 baskets have a fruit each. We can select 2 fruits out of 5 in 5*4/2! = 10 ways (= 5C2). This gives us 10 different ways of distributing the fruits.
Total number of different ways of distributing the fruits = 1 + 5 + 10 + 10 + 15 + 10 = 51 ways
I read your posts but still it isn't clear to me how one needs to count each event instead of just applying a combinatorics formula such as 'n+r-1 C r-1'?
Bunuel, you are also invited to this discussion since I basically stole this formula from you