GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

 It is currently 01 Jun 2020, 17:29 ### GMAT Club Daily Prep

#### Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

#### Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  # In the coordinate system above, which of the following is the equation

Author Message
TAGS:

### Hide Tags

Manager  Joined: 02 Dec 2012
Posts: 172
In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

10
61 00:00

Difficulty:   25% (medium)

Question Stats: 76% (01:29) correct 24% (01:38) wrong based on 2743 sessions

### HideShow timer Statistics In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

Attachment: Line L.png [ 6.88 KiB | Viewed 45165 times ]
Math Expert V
Joined: 02 Sep 2009
Posts: 64125
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

7
14 In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

Notice that line l passes through points (3,0) and (0,2), so its slope is $$m=\frac{y_2-y_1}{x_2-x_1}=-\frac{2}{3}$$ (given two points $$(x_1,y_1)$$ and $$(x_2,y_2)$$ on a line, the slope $$m$$ of the line is $$m=\frac{y_2-y_1}{x_2-x_1}$$).

Only option B, when written in $$y=mx+b$$ form has the slope of -2/3.

_________________
Manager  Joined: 27 Jan 2013
Posts: 63
Location: India
Concentration: General Management, Operations
GMAT 1: 740 Q50 V40
GPA: 3.51
WE: Other (Transportation)
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

16
1
Bunuel wrote: In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

Notice that line l passes through points (3,0) and (0,2), so its slope is $$m=\frac{y_2-y_1}{x_2-x_1}=-\frac{2}{3}$$ (given two points $$(x_1,y_1)$$ and $$(x_2,y_2)$$ on a line, the slope $$m$$ of the line is $$m=\frac{y_2-y_1}{x_2-x_1}$$).

Only option B, when written in $$y=mx+b$$ form has the slope of -2/3.

Hi Bunnel...A small query
Can we assume (As u have done in your solution) that the line passes through points (3,0) and (0,2). I mean can we safely interpret graphs on the GMAT??Since it is not explicitly stated that the line passes through those two specific points.
My approach to the above problem was as follows.
What we know from the graph is this
x and y co-ordinates of line l are both positive, x co-ordinate is > 2 and y co-ordinate is > 1
A, D and E are clearly out since x and y co-ordinates will have opposite signs
putting y=0 in choice C x=2 - Incorrect (as x co-ordinate > 2)
Only B left
Cheers ##### General Discussion
Math Expert V
Joined: 02 Sep 2009
Posts: 64125
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

Dipankar6435 wrote:
Bunuel wrote: In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

Notice that line l passes through points (3,0) and (0,2), so its slope is $$m=\frac{y_2-y_1}{x_2-x_1}=-\frac{2}{3}$$ (given two points $$(x_1,y_1)$$ and $$(x_2,y_2)$$ on a line, the slope $$m$$ of the line is $$m=\frac{y_2-y_1}{x_2-x_1}$$).

Only option B, when written in $$y=mx+b$$ form has the slope of -2/3.

Hi Bunnel...A small query
Can we assume (As u have done in your solution) that the line passes through points (3,0) and (0,2). I mean can we safely interpret graphs on the GMAT??Since it is not explicitly stated that the line passes through those two specific points.
My approach to the above problem was as follows.
What we know from the graph is this
x and y co-ordinates of line l are both positive, x co-ordinate is > 2 and y co-ordinate is > 1
A, D and E are clearly out since x and y co-ordinates will have opposite signs
putting y=0 in choice C x=2 - Incorrect (as x co-ordinate > 2)
Only B left
Cheers OG13 solution makes the same exact assumption "The line is shown going through the points (0,2) and (3,0)..."
_________________
Verbal Forum Moderator B
Joined: 10 Oct 2012
Posts: 563
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

2
2
Attachment:
Line L.png
In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

From the given figure, we can see that the line has positive intercept on both the x and y axis. Thus we can eliminate all the options except B and C. Now the intercept on the x-axis is more than 2. For option C, the x-intercept comes as 2, thus the answer has to be B.
_________________
Intern  Joined: 03 Nov 2013
Posts: 1
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

Just a different way of approaching the problem...
since we know the y-intercept is -c/b when the equation is given in the form ax+by +c =0.. simply use what's on the right side of the equation (it'll turn negative when moved to the left) and divide by b.
Intern  Joined: 10 Nov 2013
Posts: 16
Location: United States
Concentration: Healthcare, Strategy
WE: Information Technology (Health Care)
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

Bunuel wrote:
Dipankar6435 wrote:
Bunuel wrote: In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

Notice that line l passes through points (3,0) and (0,2), so its slope is $$m=\frac{y_2-y_1}{x_2-x_1}=-\frac{2}{3}$$ (given two points $$(x_1,y_1)$$ and $$(x_2,y_2)$$ on a line, the slope $$m$$ of the line is $$m=\frac{y_2-y_1}{x_2-x_1}$$).

Only option B, when written in $$y=mx+b$$ form has the slope of -2/3.

Hi Bunnel...A small query
Can we assume (As u have done in your solution) that the line passes through points (3,0) and (0,2). I mean can we safely interpret graphs on the GMAT??Since it is not explicitly stated that the line passes through those two specific points.
My approach to the above problem was as follows.
What we know from the graph is this
x and y co-ordinates of line l are both positive, x co-ordinate is > 2 and y co-ordinate is > 1
A, D and E are clearly out since x and y co-ordinates will have opposite signs
putting y=0 in choice C x=2 - Incorrect (as x co-ordinate > 2)
Only B left
Cheers OG13 solution makes the same exact assumption "The line is shown going through the points (0,2) and (3,0)..."

I agree with Dipankar6435 approach. I used the similar approach since it is not explicitly mentioned that the line passes through and also there is no line markers at the points where the line touches both x and y axis. Since there is a line marker on the x axis that clearly indicates that the x value should be greater than 2, out of the 2 answer choices, I picked B as the right one. Thanks.
Manager  Joined: 28 Apr 2014
Posts: 185
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

1
Bunuel wrote:
Dipankar6435 wrote:
Bunuel wrote: In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

Notice that line l passes through points (3,0) and (0,2), so its slope is $$m=\frac{y_2-y_1}{x_2-x_1}=-\frac{2}{3}$$ (given two points $$(x_1,y_1)$$ and $$(x_2,y_2)$$ on a line, the slope $$m$$ of the line is $$m=\frac{y_2-y_1}{x_2-x_1}$$).

Only option B, when written in $$y=mx+b$$ form has the slope of -2/3.

Hi Bunnel...A small query
Can we assume (As u have done in your solution) that the line passes through points (3,0) and (0,2). I mean can we safely interpret graphs on the GMAT??Since it is not explicitly stated that the line passes through those two specific points.
My approach to the above problem was as follows.
What we know from the graph is this
x and y co-ordinates of line l are both positive, x co-ordinate is > 2 and y co-ordinate is > 1
A, D and E are clearly out since x and y co-ordinates will have opposite signs
putting y=0 in choice C x=2 - Incorrect (as x co-ordinate > 2)
Only B left
Cheers OG13 solution makes the same exact assumption "The line is shown going through the points (0,2) and (3,0)..."

Very very strange because in Maths , one is groomed to never make assumptions based on diagrams unless explicitly mentioned .
Intern  Joined: 16 May 2014
Posts: 35
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

2
1
There is another general form of line in co-ordinate plane which is:

x/a + y/b = 1

where a is the point of intersection of line and x-axis and b is the point of intersection of line with y-axis.
Here a=3, b=2
Therefore,

x/3 + y/2 = 1

or

2x + 3y = 6

This solution is valid, if we assume the values of a, and b.

But even if we don’t assume these values, we can eliminate option A), D), and E) because, we can see that both the x intercept and y intercept are positive.

Now, we see a>b through observation, which means coefficient of x is greater than coefficient of y, which is in option B) only. Hence B is the answer.
Intern  Joined: 14 May 2014
Posts: 39
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

6
3
If intercept on the x axis and y axis is known, intercept formula for line is the fastest method to get the equation of the line.

Equation of a line which cut an intercept a at x axis and b at y axis is given by

(x/a) + (y/b) = 1

However, a more useful form of this equation is

bx + ay = ab

using this, equation of line can be found easily by inspection only
Here , Intercept at x axis = a = 3
Intercept at y axis = b = 2
hence, equation of line by putting values
2x+3y =6 hence answer is B
Intern  Joined: 24 Aug 2015
Posts: 7
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

2
2
L = (0,2)
X = (3,0)

slope = 2-0/0-3 = -2/3

y = mx + b
y = -2/3x + b

Find b:

2=0+b
b = 2

y=-2/3x + 2
x 3 to eliminated -2/3

3y = -2x +6
3y + 2x = 6
Intern  S
Status: Current Student
Joined: 26 Mar 2014
Posts: 26
Concentration: Entrepreneurship, Finance
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

4 Quote:
In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

Without any calculation Approach!
We know from the graph that X-intercept must be greater than 2.
So, co-efficient of x must be 2. Hence C and E are out.
The equation of straight line is y=mx+b and In the figure we can see that slope must be negative.
Therefore, A and D are out since they have positive slope.
Target Test Prep Representative G
Affiliations: Target Test Prep
Joined: 04 Mar 2011
Posts: 2800
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

Attachment:
Line L.png
In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

We start by defining the equation of line l using the slope-intercept form of a line (y = mx + b), where m = slope and b = the y-intercept.

Notice that line l has two points: (0,2) and (3,0). We can use these two points to determine the slope. The formula for slope is:

m = (change in y)/(change in x) or

m = (y_2 – y_1)/(x_2 – x_1)

Plugging in our points we have:

m = (0 – 2)/(3 – 0)

m = -2/3

We also see from the diagram that the y-intercept of line l is 2. Substituting the slope and the y-intercept into the line equation we have:

y = (-2/3)x + 2

The final step is to recognize that the answer choices are in a different form than is our equation for line l. Thus, we have to manipulate our equation such that it will match one of the answer choices. Let's first multiply the entire equation by 3. This gives us:

3y = -2x + 6

Then add 2x to both sides of the equation:

2x + 3y = 6

_________________

# Jeffrey Miller

Jeff@TargetTestPrep.com

See why Target Test Prep is the top rated GMAT quant course on GMAT Club. Read Our Reviews

If you find one of my posts helpful, please take a moment to click on the "Kudos" button.

GMAT Club Legend  V
Joined: 11 Sep 2015
Posts: 4882
GMAT 1: 770 Q49 V46
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

8
Top Contributor
Attachment:
Line L.png
In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

We can see that points (0,2) and (3,0) are ON THE LINE. So, their coordinates must SATISFY the equation of the line.

(A) 2x - 3y = 6. 2(0) - 3(2) = -6 ELIMINATE
(B) 2x + 3y = 6. 2(0) + 3(2) = 6 KEEP
(C) 3x + 2y = 6. 3(0) +2(2) = 4 ELIMINATE
(D) 2x - 3y = -6. 2(0) - 3(2) = -6 KEEP
(E) 3x - 2y = -6. 3(0) - 2(2) = -4 ELIMINATE

Great. We're down to B or D

Let's test (3,0).
(B) 2x + 3y = 6. 2(3) + 3(0) = 6 KEEP
(D) 2x - 3y = -6. 2(3) - 3(0) = 6 ELIMINATE

RELATED VIDEO

_________________
Intern  B
Joined: 16 May 2017
Posts: 15
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

For this problem, I find it easier to use answer choices. Only one answer choice can work for both coordinates.

Let's say P1 (0; 2) and P2 (3; 0)
for P1 x=0, y=2
for P2 x=3, y=2
________________________
Using P1 coordinates:
(a) 2*0 - 3*2 = - 6 , not sufficient
(b) 2*0+3*2= 6 - sufficient
(c) 3*0 + 2*3 = 4, not sufficient
(d) 3*0 - 3*2 = -6, also sufficient
(e) 3*0 - 2*2 = -4, not sufficint

So we have 2 answers that are sufficient for P1, b and d.

Using P2 coordinates
(a) 2*3 - 3*0 = 6, sufficient
(b) 2*3 + 3.0 = 6, also sufficient
(c) 3*3 +2*0 = 9 - not sufficient
(d) 2*3 - 3*0 = 6 - not sufficient
(e) 2*3 - 2*y = 6, not sufficient.

Here we also have 2 answers that are sufficient, but only 1 answer is sufficient for both coordinates, which is B.
Manager  S
Joined: 21 Jul 2014
Posts: 58
GMAT Date: 07-30-2015
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

Attachment:
Line L.png
In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

A very simple approach would be -
Notice line l has a negative slope and the line l intersects in 0,2 and 3,0. Only option B & C satisfies i.e they have a negative slope { rewrite them in slope intercept form y= mx + b}

B. y = -2/3x + 2 { put the points 0,2 & 3,0 - they both satisfies the equation}
C. y = -3/2x + 2 { put the points 0,2 & 3,0- notice 3,0 doesn't satisfies the equation}.

Hope you understood.
Please press the kudos for the appreciation.

Thanks
Manager  B
Joined: 23 Oct 2017
Posts: 62
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

Attachment:
Line L.png
In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

--------
Equation of a line can be writter as (x/a) + (y/b) =1
where a = x intercept & b=y intercept
from figure both a & b are + ve => only options B & C remain

And again from figure a>b => option B is the best possible choice
Intern  B
Joined: 27 Dec 2017
Posts: 26
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

From the figure we know that slope is negative ..only option B has negative slope

study mode
Senior Manager  G
Status: love the club...
Joined: 24 Mar 2015
Posts: 257
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

Attachment:
Line L.png

hi

since x and y intercepts are given, lets try the below method

(x/a) + (y/b) = 1 [ where a is x intercept and b is y intercept ]

which implies

2x +3y = 6 = answer choice B

hope this helps!
cheers and thanks! Intern  B
Joined: 14 Feb 2018
Posts: 6
Re: In the coordinate system above, which of the following is the equation  [#permalink]

### Show Tags

GMATPrepNow wrote:
Attachment:
Line L.png
In the coordinate system above, which of the following is the equation of line l ?

(A) 2x - 3y = 6
(B) 2x + 3y = 6
(C) 3x + 2y = 6
(D) 2x - 3y = -6
(E) 3x - 2y = -6

We can see that points (0,2) and (3,0) are ON THE LINE. So, their coordinates must SATISFY the equation of the line.

(A) 2x - 3y = 6. 2(0) - 3(2) = -6 ELIMINATE
(B) 2x + 3y = 6. 2(0) + 3(2) = 6 KEEP
(C) 3x + 2y = 6. 3(0) +2(2) = 4 ELIMINATE
(D) 2x - 3y = -6. 2(0) - 3(2) = -6 KEEP
(E) 3x - 2y = -6. 3(0) - 2(2) = -4 ELIMINATE

Great. We're down to B or D

Let's test (3,0).
(B) 2x + 3y = 6. 2(3) + 3(0) = 6 KEEP
(D) 2x - 3y = -6. 2(3) - 3(0) = 6 ELIMINATE

RELATED VIDEO

I think that first you should eliminate the options who don't have negative slope. Your process is tedious if you don't do that before. Hope I was clear. Re: In the coordinate system above, which of the following is the equation   [#permalink] 05 Oct 2018, 13:06

Go to page    1   2    Next  [ 28 posts ]

# In the coordinate system above, which of the following is the equation  