Summer is Coming! Join the Game of Timers Competition to Win Epic Prizes. Registration is Open. Game starts Mon July 1st.

It is currently 21 Jul 2019, 12:16

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

In what ratio should Solution 1 and Solution 2 be mixed to

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Manager
Manager
User avatar
Joined: 06 Apr 2010
Posts: 110
Reviews Badge
In what ratio should Solution 1 and Solution 2 be mixed to  [#permalink]

Show Tags

New post 31 Oct 2010, 05:20
4
20
00:00
A
B
C
D
E

Difficulty:

  35% (medium)

Question Stats:

72% (01:50) correct 28% (01:54) wrong based on 556 sessions

HideShow timer Statistics


In what ratio should Solution 1 and Solution 2 be mixed to get a solution which contains water and milk in the ratio of 3:7?

(1) Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3
(2) The amount of milk in 100 gallon of solution 1 is 80 gallons more than that of water in the same solution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56307
Re: Mixture Problem  [#permalink]

Show Tags

New post 31 Oct 2010, 09:22
2
7
udaymathapati wrote:
In what ratio should Solution 1 and Solution 2 be mixed to get a solution which contains water and milk in the ratio of 3:7?
1. Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3
2. The amount of milk in 100 gallon of solution 1 is 80 gallaons more than that of water in teh same solulution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.


(1) Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3

Given: \(\frac{w_1}{m_1}=\frac{x}{9x}\) and \(\frac{w_2}{m_2}=\frac{2y}{3y}\), for some multiples \(x\) and \(y\).

We want \(\frac{x+2y}{9x+3y}=\frac{3}{7}\). Question: \(\frac{x+9x}{2y+3y}=\frac{2x}{y}=?\)

From first equation we can express \(x\) in terms of \(y\) (or vise versa) substitute it in the second and get desired ratio: \(\frac{x+2y}{9x+3y}=\frac{3}{7}\) --> \(y=4x\) --> \(\frac{2x}{y}=\frac{2x}{4x}=\frac{1}{2}\). Sufficient.

(2) The amount of milk in 100 gallon of solution 1 is 80 gallaons more than that of water in teh same solulution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.

Given: \(w_1+m_1=100\) and \(w_1+80=m_1\) ---> \(w_1=10\) and \(m_1=90\) --> \(\frac{w_1}{m_1}=\frac{x}{9x}\);

\(w_2+m_2=50\) and \(w_2+10=m_2\) ---> \(w_2=20\) and \(m_1=30\)--> \(\frac{w_2}{m_2}=\frac{2y}{3y}\);

The same info as in (1). Sufficient.

Answer: D.
_________________
General Discussion
Manager
Manager
User avatar
Joined: 26 Jul 2010
Posts: 75
Location: India
Concentration: Operations, General Management
Schools: IIMA (M)
GMAT 1: 640 Q48 V29
GMAT 2: 670 Q49 V31
WE: Supply Chain Management (Military & Defense)
Re: Mixture Problem  [#permalink]

Show Tags

New post 23 Apr 2011, 00:06
1
answer is D


REMEMBER QUE IS ASKING RATIO
1. sufficent
equation will be like
1/10 x + 2/5 y = 3/10 (x+y)
we can find ratio of x and y
2. sufficent similarly we can fin ratio
( READ ST 2 CAREFULLY)

hence D
_________________
lets start again
Manager
Manager
avatar
Joined: 11 Dec 2010
Posts: 106
WE: Consulting (Consulting)
Re: Mixture Problem  [#permalink]

Show Tags

New post 23 Apr 2011, 09:43
We need the ratio of both the liquids to get the answer
Statement 1 and Statement 2 independently give us this information
So answer D
Retired Moderator
avatar
B
Joined: 16 Nov 2010
Posts: 1358
Location: United States (IN)
Concentration: Strategy, Technology
Reviews Badge
Re: Mixture Problem  [#permalink]

Show Tags

New post 24 Apr 2011, 22:41
W/M = 3/7

W1/M1 = 1/9 W2/M2 = 2/3


So Q1/Q2 = (2/3 - 3/7)/(3/7 - 1/9)


= (14 - 9)/21/(27 - 7)/63 = 5/21 * 63/20 = 3/4

(1) is sufficient


(2)

For Solution 1

M = W + 80

M + W = 100

For Solution 2


M = W + 10

M + W = 50

So we can find the ratios of M:W in solutions and using above alligation technique find the required ratio.

Answer - D
_________________
Formula of Life -> Achievement/Potential = k * Happiness (where k is a constant)

GMAT Club Premium Membership - big benefits and savings
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56307
Re: In what ratio should Solution 1 and Solution 2 be mixed to  [#permalink]

Show Tags

New post 13 Jun 2013, 02:15
VP
VP
User avatar
Status: Far, far away!
Joined: 02 Sep 2012
Posts: 1044
Location: Italy
Concentration: Finance, Entrepreneurship
GPA: 3.8
GMAT ToolKit User
Re: In what ratio should Solution 1 and Solution 2 be mixed to  [#permalink]

Show Tags

New post 13 Jun 2013, 04:49
2
udaymathapati wrote:
In what ratio should Solution 1 and Solution 2 be mixed to get a solution which contains water and milk in the ratio of 3:7?

(1) Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3
(2) The amount of milk in 100 gallon of solution 1 is 80 gallons more than that of water in the same solution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.


Using aligation:

"get a solution which contains water and milk in the ratio of 3:7" => water = 30%

(1) Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3
Solution 2 (in terms of water):\(40%\)
Desired solution ( in % water): \(30%\)
Solution 1 (in terms of water):\(10%\)

\(\frac{Solution_2}{Solution_1}=\frac{2}{1}\)

(2) The amount of milk in 100 gallon of solution 1 is 80 gallons more than that of water in the same solution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.
Solution 1: M=90 W=10 => 10% W
Solution 2: M=30 W=20 => 40% W, both statement give us the same info

Solution 2 (in terms of water):\(40%\)
Desired solution ( in % water): \(30%\)
Solution 1 (in terms of water):\(10%\)

\(\frac{Solution_2}{Solution_1}=\frac{2}{1}\)
_________________
It is beyond a doubt that all our knowledge that begins with experience.
Kant , Critique of Pure Reason

Tips and tricks: Inequalities , Mixture | Review: MGMAT workshop
Strategy: SmartGMAT v1.0 | Questions: Verbal challenge SC I-II- CR New SC set out !! , My Quant

Rules for Posting in the Verbal Forum - Rules for Posting in the Quant Forum[/size][/color][/b]
Manager
Manager
avatar
Joined: 14 Nov 2011
Posts: 117
Location: United States
Concentration: General Management, Entrepreneurship
GPA: 3.61
WE: Consulting (Manufacturing)
GMAT ToolKit User
Re: Mixture Problem  [#permalink]

Show Tags

New post 19 Jun 2013, 07:58
subhashghosh wrote:
W/M = 3/7

W1/M1 = 1/9 W2/M2 = 2/3


So Q1/Q2 = (2/3 - 3/7)/(3/7 - 1/9)


= (14 - 9)/21/(27 - 7)/63 = 5/21 * 63/20 = 3/4

(1) is sufficient


(2)

For Solution 1

M = W + 80

M + W = 100

For Solution 2


M = W + 10

M + W = 50

So we can find the ratios of M:W in solutions and using above alligation technique find the required ratio.

Answer - D



Hi Karishma,
Why is the ratio of S1 to S2 not equal to 1/2, by using this method:

W1/M1 = 1/9 W2/M2 = 2/3


So Q1/Q2 = (2/3 - 3/7)/(3/7 - 1/9)


= (14 - 9)/21/(27 - 7)/63 = 5/21 * 63/20 = 3/4

Which one is correct?
Veritas Prep GMAT Instructor
User avatar
D
Joined: 16 Oct 2010
Posts: 9449
Location: Pune, India
Re: Mixture Problem  [#permalink]

Show Tags

New post 19 Jun 2013, 21:33
2
cumulonimbus wrote:
subhashghosh wrote:
W/M = 3/7

W1/M1 = 1/9 W2/M2 = 2/3


So Q1/Q2 = (2/3 - 3/7)/(3/7 - 1/9)


= (14 - 9)/21/(27 - 7)/63 = 5/21 * 63/20 = 3/4

(1) is sufficient


(2)

For Solution 1

M = W + 80

M + W = 100

For Solution 2


M = W + 10

M + W = 50

So we can find the ratios of M:W in solutions and using above alligation technique find the required ratio.

Answer - D



Hi Karishma,
Why is the ratio of S1 to S2 not equal to 1/2, by using this method:

W1/M1 = 1/9 W2/M2 = 2/3


So Q1/Q2 = (2/3 - 3/7)/(3/7 - 1/9)


= (14 - 9)/21/(27 - 7)/63 = 5/21 * 63/20 = 3/4

Which one is correct?


Because you don't average out the ratio; you average out the concentration of any one component where the weights used will be volume. Understand that when you find the average of a quantity, it should make physical sense.

Say you know that milk:water = 1:9 in a 100 ml solution.
When you do 1/9 * 100 ml, what do you get? What is 11.11 ml? Nothing
What you have to do is 1/10 * 100 ml = 10 ml (amount of milk in the solution). 1/10 is the concentration of milk in the solution and you multiply that by the volume of solution.

So here, you have to work with any one component. Say we work with water.
Avg concentration of water = 3/10
Concentration of water in solution 1 = 1/10
Concentration of water in solution 2 = 2/5 = 4/10

w1/w2 = (4/10 - 3/10)/(3/10 - 1/10) = 1/2

P.S. - PM me the link when you want me to reply on a thread. I opened this post by chance. I may not have seen your question directed to me otherwise.
_________________
Karishma
Veritas Prep GMAT Instructor

Learn more about how Veritas Prep can help you achieve a great GMAT score by checking out their GMAT Prep Options >
Manager
Manager
avatar
Joined: 14 Dec 2012
Posts: 66
Location: United States
Re: Mixture Problem  [#permalink]

Show Tags

New post 16 Jul 2013, 14:43
1
Bunuel wrote:
udaymathapati wrote:
In what ratio should Solution 1 and Solution 2 be mixed to get a solution which contains water and milk in the ratio of 3:7?
1. Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3
2. The amount of milk in 100 gallon of solution 1 is 80 gallaons more than that of water in teh same solulution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.


(1) Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3

Given: \(\frac{w_1}{m_1}=\frac{x}{9x}\) and \(\frac{w_2}{m_2}=\frac{2y}{3y}\), for some multiples \(x\) and \(y\).

We want \(\frac{x+2y}{9x+3y}=\frac{3}{7}\). Question: \(\frac{x+9x}{2y+3y}=\frac{2x}{y}=?\)

From first equation we can express \(x\) in terms of \(y\) (or vise versa) substitute it in the second and get desired ratio: \(\frac{x+2y}{9x+3y}=\frac{3}{7}\) --> \(y=4x\) --> \(\frac{2x}{y}=\frac{2x}{4x}=\frac{1}{2}\). Sufficient.

(2) The amount of milk in 100 gallon of solution 1 is 80 gallaons more than that of water in teh same solulution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.

Given: \(w_1+m_1=100\) and \(w_1+80=m_1\) ---> \(w_1=10\) and \(m_1=90\) --> \(\frac{w_1}{m_1}=\frac{x}{9x}\);

\(w_2+m_2=50\) and \(w_2+10=m_2\) ---> \(w_2=20\) and \(m_1=30\)--> \(\frac{w_2}{m_2}=\frac{2y}{3y}\);

The same info as in (1). Sufficient.

Answer: D.




Hi Bunuel,
I didnt understand the part:
Question: \(\frac{x+9x}{2y+3y}=\frac{2x}{y}=?\)?
how did we get this?
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 56307
Re: Mixture Problem  [#permalink]

Show Tags

New post 16 Jul 2013, 23:23
up4gmat wrote:
Bunuel wrote:
udaymathapati wrote:
In what ratio should Solution 1 and Solution 2 be mixed to get a solution which contains water and milk in the ratio of 3:7?
1. Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3
2. The amount of milk in 100 gallon of solution 1 is 80 gallaons more than that of water in teh same solulution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.


(1) Solution 1 contains water and milk in the ratio 1:9 and Solution 2 contains water and milk in the ratio 2:3

Given: \(\frac{w_1}{m_1}=\frac{x}{9x}\) and \(\frac{w_2}{m_2}=\frac{2y}{3y}\), for some multiples \(x\) and \(y\).

We want \(\frac{x+2y}{9x+3y}=\frac{3}{7}\). Question: \(\frac{x+9x}{2y+3y}=\frac{2x}{y}=?\)

From first equation we can express \(x\) in terms of \(y\) (or vise versa) substitute it in the second and get desired ratio: \(\frac{x+2y}{9x+3y}=\frac{3}{7}\) --> \(y=4x\) --> \(\frac{2x}{y}=\frac{2x}{4x}=\frac{1}{2}\). Sufficient.

(2) The amount of milk in 100 gallon of solution 1 is 80 gallaons more than that of water in teh same solulution. Further, 50 gallons of Solution 2 contains 10 gallons more milk than water.

Given: \(w_1+m_1=100\) and \(w_1+80=m_1\) ---> \(w_1=10\) and \(m_1=90\) --> \(\frac{w_1}{m_1}=\frac{x}{9x}\);

\(w_2+m_2=50\) and \(w_2+10=m_2\) ---> \(w_2=20\) and \(m_1=30\)--> \(\frac{w_2}{m_2}=\frac{2y}{3y}\);

The same info as in (1). Sufficient.

Answer: D.




Hi Bunuel,
I didnt understand the part:
Question: \(\frac{x+9x}{2y+3y}=\frac{2x}{y}=?\)?
how did we get this?


We need to find the ratio of Solution 1 to Solution 2 \(\frac{solution \ 1}{solution \ 2}=\frac{x+9x}{2y+3y}=\frac{10x}{5y}=\frac{2x}{y}=?\), while having that \(\frac{x+2y}{9x+3y}=\frac{3}{7}\).

Hope it's clear.
_________________
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 11721
Re: In what ratio should Solution 1 and Solution 2 be mixed to  [#permalink]

Show Tags

New post 21 Mar 2019, 17:13
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________
GMAT Club Bot
Re: In what ratio should Solution 1 and Solution 2 be mixed to   [#permalink] 21 Mar 2019, 17:13
Display posts from previous: Sort by

In what ratio should Solution 1 and Solution 2 be mixed to

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne