GMAT Question of the Day - Daily to your Mailbox; hard ones only

It is currently 21 Oct 2018, 14:09

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Is the positive integer x divisible by each integer from 2 through 6 ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Intern
Intern
avatar
Joined: 25 Mar 2016
Posts: 2
Is the positive integer x divisible by each integer from 2 through 6 ?  [#permalink]

Show Tags

New post 14 May 2016, 03:14
4
33
00:00
A
B
C
D
E

Difficulty:

  65% (hard)

Question Stats:

61% (02:00) correct 39% (01:58) wrong based on 667 sessions

HideShow timer Statistics

Is the positive integer x divisible by each integer from 2 through 6 ?

(1) x = 10m, where m is a positive integer divisible by each integer from 2 through 5

(2) 10x = n, where n is a positive integer divisible by each integer from 2 through 9
Most Helpful Expert Reply
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 50009
Is the positive integer x divisible by each integer from 2 through 6 ?  [#permalink]

Show Tags

New post 14 May 2016, 03:47
16
14
Is the positive integer x divisible by each integer from 2 through 6 ?

The question asks whether x is divisible by the LCM of 2, 3, 4, 5, and 6, which is 60.

(1) x = 10m, where m is a positive integer divisible by each integer from 2 through 5.

m is divisible by the LCM of of 2, 3, 4, and 5, which is 60. Thus x = 10*(multiple of 60). Sufficient.

(2) 10x = n, where n is a positive integer divisible by each integer from 2 through 9.

n is divisible by the LCM of of 2, 3, 4, 5, 6, 7, 8, and 9, which is 2520 (9*7*8*5). Thus 10x = (multiple of 2520) --> x = (multiple of 252). If x = 252, then the answer is NO but if x is say, 252*60, then the answer is YES. Not sufficient.

Answer: A.
_________________

New to the Math Forum?
Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:
GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:
PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.


What are GMAT Club Tests?
Extra-hard Quant Tests with Brilliant Analytics

General Discussion
Math Expert
User avatar
V
Joined: 02 Aug 2009
Posts: 6974
Re: Is the positive integer x divisible by each integer from 2 through 6 ?  [#permalink]

Show Tags

New post 14 May 2016, 03:36
12
7
pego2008 wrote:
Is the positive integer x divisible by each integer from 2 through 6 ?

1- x = 10m, where m is a positive integer divisible by each integer from 2 through 5

2- 10x = n, where n is a positive integer divisible by each integer from 2 through 9

Thanks in advance


clearly A is suff....
1- x = 10m, where m is a positive integer divisible by each integer from 2 through 5
x=10m.. and m is a multiple of 2 to 5................
since m is a multiple of 2 and 3 both, it is also div by 6..
hence suff

2-10x = n, where n is a positive integer divisible by each integer from 2 through 9
10x = n...

if n = 2*3*4*5*6*7*8*9...
10x = 2*3*4*5*6*7*8*9...
so x = 3*4*6*7*8*9...
so x need not be div by 5...NO

if n = 2*3*4*5*6*7*8*9*5...
ans is YES
Insuff

A
_________________

1) Absolute modulus : http://gmatclub.com/forum/absolute-modulus-a-better-understanding-210849.html#p1622372
2)Combination of similar and dissimilar things : http://gmatclub.com/forum/topic215915.html
3) effects of arithmetic operations : https://gmatclub.com/forum/effects-of-arithmetic-operations-on-fractions-269413.html


GMAT online Tutor

Manager
Manager
avatar
B
Joined: 25 Jun 2016
Posts: 61
GMAT 1: 780 Q51 V46
Is the positive integer x divisible by each integer from 2 through 6 ?  [#permalink]

Show Tags

New post 07 Jul 2016, 12:16
2
considering the numbers one at a time in order to figure out what x will need, at a minimum, in it's prime factorization:

2: in order for x to be divisible by 2, x needs a 2 in its PF
3: in order for x to be divisible by 3, x needs a 3 in its PF (so now we have 2*3)
4: in order for x to be divisible by 4, x needs another 2 in its PF (so now we have 2*2*3)
5: in order for x to be divisible by 5, x needs a 5 in its PF (so now we have 2*2*3*5)
6: in order for x to be divisible by 6, x needs a 2 and a 3 in its PF (we already have that so our min doesn't change; x still needs, at min, 2*2*3*5 in its PF)

So we need enough info to prove that x has at least 2*2*3*5 in its PF

Statement 1.

x = (10)(m) ---> rewriting m in terms of what we know about its PF --> x=(2*5)(2*3*2*5*whatever else might be in m)

We can see right away that x has at least 2*2*3*5 in its PF. Sufficient.

Statement 2

10x = n ---> x = n/10 --> rewriting m in terms of what we know about its PF, and factoring 10 -->
x = (2*2*2*3*3*5*7*whatever else might be in n)/2*5 --> the two and 5 cancel to get --->
x = (2*2*3*3*7*whatever else might be in n)

We don't know if x has 2*2*3*5 in its PF because we don't know for sure that there is a 5; there may or may not be a 5 in the 'whatever else might be in n' part. Insufficient.

A is the answer.
Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 6390
GMAT 1: 760 Q51 V42
GPA: 3.82
Premium Member
Re: Is the positive integer x divisible by each integer from 2 through 6 ?  [#permalink]

Show Tags

New post 08 Jul 2016, 22:04
If we modify the original condition and the question, since x has to be divisible by 2, 3, 4, 5 and 6, the question becomes “is it x a multiple of 60?”
In case of con 1), from x=10m, m is divisible by 2, 3, 4 and 5. Hence, x is a multiple of 60. The answer is yes and the condition is sufficient. Thus, the correct answer is A.

- Once we modify the original condition and the question according to the variable approach method 1, we can solve approximately 30% of DS questions.
_________________

MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $99 for 3 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"

Current Student
User avatar
Joined: 12 Nov 2015
Posts: 59
Location: Uruguay
Concentration: General Management
Schools: Goizueta '19 (A)
GMAT 1: 610 Q41 V32
GMAT 2: 620 Q45 V31
GMAT 3: 640 Q46 V32
GPA: 3.97
Is the positive integer x divisible by each integer from 2 through 6 ?  [#permalink]

Show Tags

New post 23 Jul 2016, 13:19
chetan2u wrote:
pego2008 wrote:
Is the positive integer x divisible by each integer from 2 through 6 ?

1- x = 10m, where m is a positive integer divisible by each integer from 2 through 5

2- 10x = n, where n is a positive integer divisible by each integer from 2 through 9

Thanks in advance


clearly A is suff....
1- x = 10m, where m is a positive integer divisible by each integer from 2 through 5
x=10m.. and m is a multiple of 2 to 5................
since m is a multiple of 2 and 3 both, it is also div by 6..
hence suff

2-10x = n, where n is a positive integer divisible by each integer from 2 through 9
10x = n...

if n = 2*3*4*5*6*7*8*9...
10x = 2*3*4*5*6*7*8*9...
so x = 3*4*6*7*8*9...
so x need not be div by 5...NO

if n = 2*3*4*5*6*7*8*9*5...
ans is YES
Insuff

A


Hello, can someone please explain to me why can we add another five in the second statement?
It's kind of driving me nuts! :?: :?: :?: :?: :?: :?: :?: :?
SC Moderator
User avatar
D
Joined: 13 Apr 2015
Posts: 1693
Location: India
Concentration: Strategy, General Management
GMAT 1: 200 Q1 V1
GPA: 4
WE: Analyst (Retail)
GMAT ToolKit User Premium Member
Re: Is the positive integer x divisible by each integer from 2 through 6 ?  [#permalink]

Show Tags

New post 23 Jul 2016, 20:17
1
Avigano wrote:
chetan2u wrote:
pego2008 wrote:
Is the positive integer x divisible by each integer from 2 through 6 ?

1- x = 10m, where m is a positive integer divisible by each integer from 2 through 5

2- 10x = n, where n is a positive integer divisible by each integer from 2 through 9

Thanks in advance


clearly A is suff....
1- x = 10m, where m is a positive integer divisible by each integer from 2 through 5
x=10m.. and m is a multiple of 2 to 5................
since m is a multiple of 2 and 3 both, it is also div by 6..
hence suff

2-10x = n, where n is a positive integer divisible by each integer from 2 through 9
10x = n...

if n = 2*3*4*5*6*7*8*9...
10x = 2*3*4*5*6*7*8*9...
so x = 3*4*6*7*8*9...
so x need not be div by 5...NO

if n = 2*3*4*5*6*7*8*9*5...
ans is YES
Insuff

A


Hello, can someone please explain to me why can we add another five in the second statement?
It's kind of driving me nuts! :?: :?: :?: :?: :?: :?: :?: :?


Hi,

St2: 10x = n --> x = n/10
n can be any integer.
If n = 2*3*4*5*6*7*8*9*5, then x is divisible by each integer from 2 through 6 --> Another 5 is added here to show sufficiency.
If n = 2*3*4*5*6*7*8*9, then x is not divisible by 5 because n/10 consumes a 2 and 5 --> In this case St2 is not sufficient
We can conclude that St2 is not sufficient at all times.

Hope it helps
Non-Human User
User avatar
Joined: 09 Sep 2013
Posts: 8507
Premium Member
Re: Is the positive integer x divisible by each integer from 2 through 6 ?  [#permalink]

Show Tags

New post 23 Dec 2017, 01:26
Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________

GMAT Books | GMAT Club Tests | Best Prices on GMAT Courses | GMAT Mobile App | Math Resources | Verbal Resources

GMAT Club Bot
Re: Is the positive integer x divisible by each integer from 2 through 6 ? &nbs [#permalink] 23 Dec 2017, 01:26
Display posts from previous: Sort by

Is the positive integer x divisible by each integer from 2 through 6 ?

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  


Copyright

GMAT Club MBA Forum Home| About| Terms and Conditions and Privacy Policy| GMAT Club Rules| Contact| Sitemap

Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne

Kindly note that the GMAT® test is a registered trademark of the Graduate Management Admission Council®, and this site has neither been reviewed nor endorsed by GMAC®.