GMAT Question of the Day - Daily to your Mailbox; hard ones only

 It is currently 19 Oct 2019, 17:47 GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.  Is the product of integers M and N even?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics
Author Message
TAGS:

Hide Tags

e-GMAT Representative V
Joined: 04 Jan 2015
Posts: 3074
Is the product of integers M and N even?  [#permalink]

Show Tags

7
18 00:00

Difficulty:   15% (low)

Question Stats: 82% (02:39) correct 18% (02:24) wrong based on 818 sessions

HideShow timer Statistics

Is the product of integers M and N even?

(1) N can be expressed as a difference of squares of two consecutive prime numbers at least one of which is odd. M can be expressed as a product of two natural numbers P and Q, where 2P + 1= Q.

(2) N can be expressed as a difference of squares of two consecutive prime numbers which lie at a distance of 2 units. M is the sum of all the numbers from 1 to Z where (Z+1) is a multiple of 4.

This is

Register for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the real-time guidance of our Experts _________________

Originally posted by EgmatQuantExpert on 09 Apr 2015, 06:04.
Last edited by EgmatQuantExpert on 13 Aug 2018, 03:11, edited 5 times in total.
Intern  Joined: 08 Feb 2015
Posts: 2
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

1
1) For N, we can surely say that it is odd. Since 2 & 3 are the only consecutive prime numbers, N = $$3^2 - 2^2$$ = 5 which is odd.
Form M, we know that M = P*Q where Q is odd. But we don't know anything about P. So nature of M can't be found.
So, insufficient.

2) For N, we can surely say that it is even because difference of squares of any two prime numbers which differ by 2 shall always be even.This is because N = $$(X+2)^2-X^2 = X^2 + 4 + 2X - X^2$$ = 2X + 4 which is even for any number X.
Since N is always even here so product of M & N will be even no matter what M is.
Sufficient.

So B.
Manager  Joined: 27 Dec 2013
Posts: 199
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

Wow.. really a thriller question. Took me somewhere around 3 mins.

Solution

The only central idea is to know if either M or N or Both are even numbers.

From Option, B it is quite clear that N= even. [Exactly at that point, I stopped further calculation].

EgmatQuantExpert wrote:
Is the product of integers M and N even?

(1) N can be expressed as a difference of squares of two consecutive prime numbers at least one of which is odd. M can be expressed as a product of two natural numbers P and Q, where 2P + 1= Q.

(2) N can be expressed as a difference of squares of two consecutive prime numbers which lie at a distance of 2 units. M is the sum of all the numbers from 1 to Z where (Z+1) is a multiple of 4.

We will provide the OA in some time. Till then Happy Solving This is

Register for our Free Session on Number Properties this Saturday to solve exciting 700+ Level Questions in a classroom environment under the real-time guidance of our Experts! _________________
Kudos to you, for helping me with some KUDOS.
Intern  Joined: 05 Feb 2015
Posts: 49
Concentration: Finance, Entrepreneurship
Schools: ISB '16, IIMA , IIMB, IIMC
WE: Information Technology (Health Care)
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

1
Hi tapas.shyam

By 2 consecutive prime numbers it need not neccesarily mean that it would be 2 and 3.According to me, it means that out of primes numbers like 2,3,5,7... the numbers would be consecutive.
Also, in condition 2, M would also be even.
Consider multiples of 4- 4,8,12
So, Z would be 3,7,11
You can check the sum of these numbers using n(n+1)/2. It will be even always.
Intern  Joined: 08 Feb 2015
Posts: 2
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

1
Naina1 wrote:
Hi tapas.shyam

By 2 consecutive prime numbers it need not neccesarily mean that it would be 2 and 3.According to me, it means that out of primes numbers like 2,3,5,7... the numbers would be consecutive.
Also, in condition 2, M would also be even.
Consider multiples of 4- 4,8,12
So, Z would be 3,7,11
You can check the sum of these numbers using n(n+1)/2. It will be even always.

Hi Naina

Thanks for your reply and opinion. However, I think my reasoning is correct as the problem says - 2 consecutive prime numbers atleast one of which is odd. Now, except 2 & 3 there is no other case where we can have an even prime number - so emphasising 'atleast one is odd' in the problem then would seem redundant. In every other case of consecutive prime numbers, we shall always have two odd prime numbers no matter what.

Secondly, in second condition, we don't even need to look into M as once we have ascertained that N is even, we can conclude that M*N shall be even no matter what value of M.
Manager  Joined: 28 Jul 2013
Posts: 63
Location: India
Concentration: Marketing, Strategy
GPA: 3.62
WE: Engineering (Manufacturing)
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

answer is B. Second one says the two prime numbers is at a distance of two hence "2" is ruled out since the next prime 3 is one away from it and 5 is 3 away from 2. Then the difference between squares of two off terms is even. N is even the value of M doesnt matter.
e-GMAT Representative V
Joined: 04 Jan 2015
Posts: 3074
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

2
2
Detailed Solution

Step-I: Given Info

We are given two integers M and N and are asked to find if their product is even.

Step-II: Interpreting the Question Statement

The product of two numbers would be even if at least one of them is even. So, we need to find if either of M and N is even.

Step-III: Statement-I

The statement tells us that M is expressed as a difference of two consecutive prime numbers of which at least one is odd. Two cases are possible:

• We know that there is only one even prime number i.e. 2, so, if one of the prime numbers is 2, the other would be 3, which is odd. Squaring them would not change their even/odd nature. The difference of an even and an odd number would be odd, so N would be odd

• If both the prime numbers are odd, then the difference of their squares would be even (as odd-odd= even). So, N would be even.

From the above two cases, we can’t say with certainty whether N is odd or even.

The statement also tells us that M is a product of P & Q where Q= 2P + 1. We can infer from this that Q is an odd number, but we do not have any information about the even/odd nature of P. So, if P is odd, M would be odd and if P is even, M would be even. Hence, we can’t say with certainty whether M is odd or even.

Since, we don’t know with certainty that either of M, N is even or not, Statement-I is insufficient to answer the question.

Step-IV: Statement-II

Statement-II tells us that N can be expressed as difference of squares of two consecutive prime numbers which lie at a distance of 2 units. We know that all the prime numbers except 2 are odd, since the next prime number after 2 is 3, we can say that 2, 3 are not the consecutive prime numbers (as they lie at a distance of 1 unit). Thus we can conclude that N can be expressed as difference of two odd prime numbers. The difference of two odd numbers will be even.

So, N would be even.

Note here that we don’t need to find the even/odd nature of M because irrespective of the nature of M, the product of M & N would always be even as N is even.

Hence, Statement-II is sufficient to answer the question.

Step-V: Combining Statements I & II

Since, we have a unique answer from Statement- I we don’t need to be combine Statements- I & II.
Hence, the correct answer is Option B

Key Takeaways

1. Know the properties of Even-Odd combinations to save the time spent deriving them in the test.
2. There is only 1 even prime number i.e. 2.
3. Odd/Even number raised to any power would not change its even/odd nature

tapas.shyam- when we say that at least one is odd, it means that either both are odd primes or one is odd prime and one is even prime. From the analysis of St-I we can't say with certainty that N is odd/even
Naina1- In statement-II we do not need to calculate the even/odd nature of M once we have established that N is even, as their product would always be even.

Regards
Harsh

_________________

Originally posted by EgmatQuantExpert on 10 Apr 2015, 07:53.
Last edited by EgmatQuantExpert on 07 Aug 2018, 05:36, edited 1 time in total.
CEO  S
Joined: 20 Mar 2014
Posts: 2597
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44 GPA: 3.7
WE: Engineering (Aerospace and Defense)
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

EgmatQuantExpert wrote:
Detailed Solution

Step-I: Given Info

We are given two integers M and N and are asked to find if their product is even.

Step-II: Interpreting the Question Statement

The product of two numbers would be even if at least one of them is even. So, we need to find if either of M and N is even.

Step-III: Statement-I

The statement tells us that M is expressed as a difference of two consecutive prime numbers of which at least one is odd. Two cases are possible:

• We know that there is only one even prime number i.e. 2, so, if one of the prime numbers is 2, the other would be 3, which is odd. Squaring them would not change their even/odd nature. The difference of an even and an odd number would be odd, so N would be odd

• If both the prime numbers are odd, then the difference of their squares would be even (as odd-odd= even). So, N would be even.

From the above two cases, we can’t say with certainty whether N is odd or even.

The statement also tells us that M is a product of P & Q where Q= 2P + 1. We can infer from this that Q is an odd number, but we do not have any information about the even/odd nature of P. So, if P is odd, M would be odd and if P is even, M would be even. Hence, we can’t say with certainty whether M is odd or even.

Since, we don’t know with certainty that either of M, N is even or not, Statement-I is insufficient to answer the question.

Step-IV: Statement-II

Statement-II tells us that N can be expressed as difference of squares of two consecutive prime numbers which lie at a distance of 2 units. We know that all the prime numbers except 2 are odd, since the next prime number after 2 is 3, we can say that 2, 3 are not the consecutive prime numbers (as they lie at a distance of 1 unit). Thus we can conclude that N can be expressed as difference of two odd prime numbers. The difference of two odd numbers will be even.

So, N would be even.

Note here that we don’t need to find the even/odd nature of M because irrespective of the nature of M, the product of M & N would always be even as N is even.

Hence, Statement-II is sufficient to answer the question.

Step-V: Combining Statements I & II

Since, we have a unique answer from Statement- I we don’t need to be combine Statements- I & II.
Hence, the correct answer is Option B

Key Takeaways

1. Know the properties of Even-Odd combinations to save the time spent deriving them in the test.
2. There is only 1 even prime number i.e. 2.
3. Odd/Even number raised to any power would not change its even/odd nature

tapas.shyam- when we say that at least one is odd, it means that either both are odd primes or one is odd prime and one is even prime. From the analysis of St-I we can't say with certainty that N is odd/even
Naina1- In statement-II we do not need to calculate the even/odd nature of M once we have established that N is even, as their product would always be even.

Regards
Harsh

Harsh, thanks for the detailed solution. I have a doubt in statement #1 (I am definitely missing something here!). If Q= 2P+1, with both Q and being NATURAL NUMBERS, we can clearly see that Q is Odd. This leads to show that P will then be an even number. Thus, with one of P/Q determined to be an even number >> M=even. So MN = even irrespective of what N is. Thus the OA in my opinion should be D (both are sufficient!).
e-GMAT Representative V
Joined: 04 Jan 2015
Posts: 3074
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

Engr2012 wrote:
EgmatQuantExpert wrote:
Detailed Solution

Step-I: Given Info

We are given two integers M and N and are asked to find if their product is even.

Step-II: Interpreting the Question Statement

The product of two numbers would be even if at least one of them is even. So, we need to find if either of M and N is even.

Step-III: Statement-I

The statement tells us that N is expressed as a difference of two consecutive prime numbers of which at least one is odd. Two cases are possible:

• We know that there is only one even prime number i.e. 2, so, if one of the prime numbers is 2, the other would be 3, which is odd. Squaring them would not change their even/odd nature. The difference of an even and an odd number would be odd, so N would be odd

• If both the prime numbers are odd, then the difference of their squares would be even (as odd-odd= even). So, N would be even.

From the above two cases, we can’t say with certainty whether N is odd or even.

The statement also tells us that M is a product of P & Q where Q= 2P + 1. We can infer from this that Q is an odd number, but we do not have any information about the even/odd nature of P. So, if P is odd, M would be odd and if P is even, M would be even. Hence, we can’t say with certainty whether M is odd or even.

Since, we don’t know with certainty that either of M, N is even or not, Statement-I is insufficient to answer the question.

Step-IV: Statement-II

Statement-II tells us that N can be expressed as difference of squares of two consecutive prime numbers which lie at a distance of 2 units. We know that all the prime numbers except 2 are odd, since the next prime number after 2 is 3, we can say that 2, 3 are not the consecutive prime numbers (as they lie at a distance of 1 unit). Thus we can conclude that N can be expressed as difference of two odd prime numbers. The difference of two odd numbers will be even.

So, N would be even.

Note here that we don’t need to find the even/odd nature of M because irrespective of the nature of M, the product of M & N would always be even as N is even.

Hence, Statement-II is sufficient to answer the question.

Step-V: Combining Statements I & II

Since, we have a unique answer from Statement- I we don’t need to be combine Statements- I & II.
Hence, the correct answer is Option B

Key Takeaways

1. Know the properties of Even-Odd combinations to save the time spent deriving them in the test.
2. There is only 1 even prime number i.e. 2.
3. Odd/Even number raised to any power would not change its even/odd nature

tapas.shyam- when we say that at least one is odd, it means that either both are odd primes or one is odd prime and one is even prime. From the analysis of St-I we can't say with certainty that N is odd/even
Naina1- In statement-II we do not need to calculate the even/odd nature of M once we have established that N is even, as their product would always be even.

Regards
Harsh

Harsh, thanks for the detailed solution. I have a doubt in statement #1 (I am definitely missing something here!). If Q= 2P+1, with both Q and being NATURAL NUMBERS, we can clearly see that Q is Odd. This leads to show that P will then be an even number. Thus, with one of P/Q determined to be an even number >> M=even. So MN = even irrespective of what N is. Thus the OA in my opinion should be D (both are sufficient!).

Hi Engr2012, You are absolutely right when you say Q is an odd number as it is in the form of 2P + 1, but if you observe you would see that Q will be an odd number irrespective of the even/odd nature of P as 2P would always be even irrespective of whether P is odd or even.

For example: Consider P = 10, Q= 21, also if P= 11, Q =23. So in both the cases, Q would be odd even when P is even or odd.

Since, we don't know for sure the even/odd nature of P in statement-I , we would not be able to comment on even/odd nature of N.

Hope its's clear Regards
Harsh
CEO  S
Joined: 20 Mar 2014
Posts: 2597
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44 GPA: 3.7
WE: Engineering (Aerospace and Defense)
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

Thanks for the reply. I understand your point but let me present to you another way of looking at the given information. If Q=2P+1, we know for sure that Q will be ODD. Also we can write P= (Q-1)/2 and as Q is odd, P has to be even.

Let me know where I'm going wrong with my thinking!

Posted from my mobile device
e-GMAT Representative V
Joined: 04 Jan 2015
Posts: 3074
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

1
Engr2012 Assume Q as 7, so Q-1= 6 which is even. If I divide (Q-1) by 2 I would get 3, which is odd.
Similarly, assume Q=9, so Q-1 = 8. If I divide (Q-1) by 2 I would get 4, which is even. Hence, Q can be even or odd.

An even number can be represented in the form of 2n. When this number is divided by 2, the resultant would be n. Now, n can be even or odd. So, we can say that a number when divided by 2 would still be even, if the original number was a multiple of at least $$2^2$$ i.e. 4. In this case, we know that (Q-1) is even but do not know if (Q-1) is a multiple of 4. Hence, $$\frac{(Q-1)}{2}$$ may be even or odd.

Regards
Harsh

Originally posted by EgmatQuantExpert on 13 Apr 2015, 04:13.
Last edited by EgmatQuantExpert on 07 Aug 2018, 05:37, edited 1 time in total.
CEO  S
Joined: 20 Mar 2014
Posts: 2597
Concentration: Finance, Strategy
Schools: Kellogg '18 (M)
GMAT 1: 750 Q49 V44 GPA: 3.7
WE: Engineering (Aerospace and Defense)
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

Hi Harsh

Thanks for the reply. Yes, now I understand my mistake. I was ignoring that 6 is an odd multiple of 2, in effect making P both odd and even with different sets of values for Q. Should've been more careful with my assumption.

Thanks
Manager  B
Joined: 03 Dec 2014
Posts: 91
Location: India
Concentration: General Management, Leadership
GMAT 1: 620 Q48 V27 GPA: 1.9
WE: Engineering (Energy and Utilities)
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

tapas.shyam wrote:
1) For N, we can surely say that it is odd. Since 2 & 3 are the only consecutive prime numbers, N = $$3^2 - 2^2$$ = 5 which is odd.
Form M, we know that M = P*Q where Q is odd. But we don't know anything about P. So nature of M can't be found.
So, insufficient.

2) For N, we can surely say that it is even because difference of squares of any two prime numbers which differ by 2 shall always be even.This is because N = $$(X+2)^2-X^2 = X^2 + 4 + 2X - X^2$$ = 2X + 4 which is even for any number X.
Since N is always even here so product of M & N will be even no matter what M is.
Sufficient.

So B.

I think consecutive prime number can be 3,5,7,11,13,. Am i Correct. Please clarify.
Intern  B
Joined: 15 Oct 2017
Posts: 8
Location: India
Concentration: Entrepreneurship, Marketing
Schools: Kellogg '20
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

EgmatQuantExpert wrote:
Is the product of integers M and N even?

(1) N can be expressed as a difference of squares of two consecutive prime numbers at least one of which is odd. M can be expressed as a product of two natural numbers P and Q, where 2P + 1= Q.

(2) N can be expressed as a difference of squares of two consecutive prime numbers which lie at a distance of 2 units. M is the sum of all the numbers from 1 to Z where (Z+1) is a multiple of 4.

This is

Register for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the real-time guidance of our Experts  Hello,
Thanks for your response but I have a question.
In the first statement, "N can be expressed as a difference of squares of two consecutive prime numbers", only consecutive prime nos are 2 and 3. So doesn't become the case in hand?
Math Expert V
Joined: 02 Sep 2009
Posts: 58445
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

SamriddhiPan wrote:
EgmatQuantExpert wrote:
Is the product of integers M and N even?

(1) N can be expressed as a difference of squares of two consecutive prime numbers at least one of which is odd. M can be expressed as a product of two natural numbers P and Q, where 2P + 1= Q.

(2) N can be expressed as a difference of squares of two consecutive prime numbers which lie at a distance of 2 units. M is the sum of all the numbers from 1 to Z where (Z+1) is a multiple of 4.

This is

Register for our Free Session on Number Properties (held every 3rd week) to solve exciting 700+ Level Questions in a classroom environment under the real-time guidance of our Experts  Hello,
Thanks for your response but I have a question.
In the first statement, "N can be expressed as a difference of squares of two consecutive prime numbers", only consecutive prime nos are 2 and 3. So doesn't become the case in hand?

The two consecutive integers, of which both are primes are indeed 2 and 3. But consecutive primes are {2, 3}, {3, 5}, {5, 7}, {7, 11}...
_________________
Non-Human User Joined: 09 Sep 2013
Posts: 13275
Re: Is the product of integers M and N even?  [#permalink]

Show Tags

Hello from the GMAT Club BumpBot!

Thanks to another GMAT Club member, I have just discovered this valuable topic, yet it had no discussion for over a year. I am now bumping it up - doing my job. I think you may find it valuable (esp those replies with Kudos).

Want to see all other topics I dig out? Follow me (click follow button on profile). You will receive a summary of all topics I bump in your profile area as well as via email.
_________________ Re: Is the product of integers M and N even?   [#permalink] 26 Dec 2018, 17:55
Display posts from previous: Sort by

Is the product of integers M and N even?

 new topic post reply Question banks Downloads My Bookmarks Reviews Important topics

 Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne  