GMAT Question of the Day: Daily via email | Daily via Instagram New to GMAT Club? Watch this Video

It is currently 27 May 2020, 14:43

Close

GMAT Club Daily Prep

Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History

Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.

Close

Request Expert Reply

Confirm Cancel

Is x < 0? (1) x^2 - x > 0 (2) |x| < 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  
Author Message
TAGS:

Hide Tags

Find Similar Topics 
Math Expert
User avatar
V
Joined: 02 Sep 2009
Posts: 64174
Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 01 Apr 2020, 01:30
00:00
A
B
C
D
E

Difficulty:

  45% (medium)

Question Stats:

58% (01:26) correct 42% (01:26) wrong based on 79 sessions

HideShow timer Statistics

CEO
CEO
User avatar
V
Status: GMATINSIGHT Tutor
Joined: 08 Jul 2010
Posts: 3992
Location: India
GMAT: QUANT EXPERT
Schools: IIM (A)
GMAT 1: 750 Q51 V41
WE: Education (Education)
Reviews Badge
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 01 Apr 2020, 01:41
1
Bunuel wrote:
Is \(x<0?\) ?


(1) \(x^2 - x > 0\)

(2) \(|x| < 1\)


Project DS Butler Data Sufficiency (DS3)


For DS butler Questions Click Here


Are You Up For the Challenge: 700 Level Questions



Question: Is x < 0?

Statement (1) \(x^2 - x > 0\)

i.e. x(x-1) > 0

i.e. either x > 1 (No) or x < 0 (Yes)

NOT SUFFICIENT

Statement (2) \(|x| < 1\)

i.e. -1 < x < 1

NOT SUFFICIENT

Combining the two statetemetns

-1 < x < 0 (YES)

SUFFICIENT

Answer: Option C
_________________
Prosper!!!
GMATinsight .............(Bhoopendra Singh and Dr.Sushma Jha)
e-mail: info@GMATinsight.com l Call : +91-9999687183 / 9891333772
Online One-on-One Skype based classes l Classroom Coaching l On-demand Quant course
Click Here for Uneditable GOOGLE reviews
Check website for most affordable Quant on-Demand course 2000+ Qns (with Video explanations)
Click for FREE Demo on VERBAL & QUANT
Our SUCCESS STORIES: From 620 to 760 l Q-42 to Q-49 in 40 days l 590 to 710 + Wharton l
ACCESS FREE GMAT TESTS HERE:22 FREE (FULL LENGTH) GMAT CATs LINK COLLECTION
SVP
SVP
avatar
V
Joined: 20 Jul 2017
Posts: 1506
Location: India
Concentration: Entrepreneurship, Marketing
WE: Education (Education)
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 01 Apr 2020, 01:54
1
2
Bunuel wrote:
Is \(x<0?\) ?

(1) \(x^2 - x > 0\)
(2) \(|x| < 1\)


(1) \(x^2 - x > 0\)
--> \(x(x - 1) > 0\)
Note: For a < b, If (x - a)(x - b) > 0. Solution is x < a or x > b
--> Solution is \(x < 0\) or \(x > 1\) --> Insufficient

(2) \(|x| < 1\)
--> \(-1 < x < 1\)
--> '\(x\)' can be \(>0\) or \(<0\) --> Insufficient

Combining (1) & (2),
--> Common solution is \(-1 < x < 0\)
--> \(x < 0\) Definitely --> Sufficient

Option C
Intern
Intern
avatar
B
Joined: 27 Feb 2018
Posts: 2
Location: Bangladesh
Schools: Neeley '22
GMAT 1: 560 Q45 V23
GPA: 3.05
GMAT ToolKit User
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 01 Apr 2020, 03:33
1
Bunuel wrote:
Is x<0? ?

(1) x^2 - x > 0
(2) |x| < 1

This is yes/no question. (Is x a negative number)

Analysis of Statement (1):
x^2 - x > 0
=> x^2 > x
[img]blob:https://www.symbolab.com/e21e63c7-dcff-4a20-91eb-bb3b7a044e54[/img]
As presented in the above number line, what we can get from statement-1 is that either x> 1 or x< 0 & that x can neither be 0 nor be a positive proper fraction. Hence, statement-1 is clearly insufficient.

Analysis of Statement (2):
|x| < 1
=> -1<x<1
[img]blob:https://www.symbolab.com/6695dbd9-9e62-4376-ae99-7a6b382aa35d[/img]
As presented in the above number line, what we can get from this statement-2 is that x can be either 0 or any positive proper fraction or any negative number greater than -1. We do not get the definite answer to the question stem. Hence, statement-2 is clearly insufficient.

Statement-1 & Statement-2 combined rule out the possibility that x can either be positive or be 0. Statement-1 & Statement-2 combined tell us the definite answer that x is negative (x<0).
So, the answer is C.
Math Revolution GMAT Instructor
User avatar
V
Joined: 16 Aug 2015
Posts: 8996
GMAT 1: 760 Q51 V42
GPA: 3.82
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 01 Apr 2020, 08:54
1
Bunuel wrote:
Is \(x<0?\) ?


(1) \(x^2 - x > 0\)

(2) \(|x| < 1\)


Project DS Butler Data Sufficiency (DS3)


For DS butler Questions Click Here


Are You Up For the Challenge: 700 Level Questions


Forget conventional ways of solving math questions. For DS problems, the VA (Variable Approach) method is the quickest and easiest way to find the answer without actually solving the problem. Remember that equal numbers of variables and independent equations ensure a solution.
Visit https://www.mathrevolution.com/gmat/lesson for details.

Since we have 1 variable (x) and 0 equations, D is most likely to be the answer. So, we should consider each condition on its own first.

Condition 1)

\(x^2 - x > 0\)
\(⇔ x(x-1) > 9\)
\(⇔ x < 0\) or \(x > 1\)

Since condition 1) does not yield a unique solution, it is not sufficient.

Condition 2)
\(|x| < 1\)
\(⇔ -1 < x < 1\)

Since condition 2) does not yield a unique solution, it is not sufficient.

Conditions 1) & 2)
The intersection of two solutions from conditions 1) and 2) is \(-1 < x < 0\).
Then x is less than 0 all times and the answer is 'yes'.
Since both conditions together yield a unique solution, they are sufficient.

Therefore, C is the answer.

If the original condition includes “1 variable”, or “2 variables and 1 equation”, or “3 variables and 2 equations” etc., one more equation is required to answer the question. If each of conditions 1) and 2) provide an additional equation, there is a 59% chance that D is the answer, a 38% chance that A or B is the answer, and a 3% chance that the answer is C or E. Thus, answer D (conditions 1) and 2), when applied separately, are sufficient to answer the question) is most likely, but there may be cases where the answer is A,B,C or E.
_________________
MathRevolution: Finish GMAT Quant Section with 10 minutes to spare
The one-and-only World’s First Variable Approach for DS and IVY Approach for PS with ease, speed and accuracy.
"Only $79 for 1 month Online Course"
"Free Resources-30 day online access & Diagnostic Test"
"Unlimited Access to over 120 free video lessons - try it yourself"
Senior Manager
Senior Manager
User avatar
D
Joined: 12 Dec 2015
Posts: 493
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 01 Apr 2020, 09:25
2
Is \(x<0?\) ?

(1) \(x^2 - x > 0\) -->insuff: x(x-1)>0 => x <0 & x>1

(2) \(|x| < 1\) --> insuff: -1<x<+1

Combining (1) & (2) => -1<x<0, so sufficient
Answer: C
Intern
Intern
avatar
B
Joined: 15 Nov 2017
Posts: 16
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 02 Apr 2020, 20:05
hiranmay wrote:
Is \(x<0?\) ?

(1) \(x^2 - x > 0\) -->insuff: x(x-1)>0 => x <0 & x>1

(2) \(|x| < 1\) --> insuff: -1<x<+1

Combining (1) & (2) => -1<x<0, so sufficient
Answer: C



Hi

thanks for explanation.
will you please explain this equation
x(x-1)>0 => x <0
why x<0 why not x>0?
Intern
Intern
avatar
B
Joined: 15 Nov 2017
Posts: 16
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 02 Apr 2020, 20:09
GMATinsight wrote:
Bunuel wrote:
Is \(x<0?\) ?


(1) \(x^2 - x > 0\)

(2) \(|x| < 1\)


Project DS Butler Data Sufficiency (DS3)


For DS butler Questions Click Here


Are You Up For the Challenge: 700 Level Questions



Question: Is x < 0?

Statement (1) \(x^2 - x > 0\)

i.e. x(x-1) > 0

i.e. either x > 1 (No) or x < 0 (Yes)

NOT SUFFICIENT

Statement (2) \(|x| < 1\)

i.e. -1 < x < 1

NOT SUFFICIENT

Combining the two statetemetns

-1 < x < 0 (YES)

SUFFICIENT

Answer: Option C


I know when my aim is to appear for GMAT I should have some basic knowledge. Yet will you plz explain how does first statement imply x<0.

Thanks
CrackVerbal Quant Expert
User avatar
P
Joined: 12 Apr 2019
Posts: 590
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1  [#permalink]

Show Tags

New post 02 Apr 2020, 23:26
tannumunu wrote:
hiranmay wrote:
Is \(x<0?\) ?

(1) \(x^2 - x > 0\) -->insuff: x(x-1)>0 => x <0 & x>1

(2) \(|x| < 1\) --> insuff: -1<x<+1

Combining (1) & (2) => -1<x<0, so sufficient
Answer: C



Hi

thanks for explanation.
will you please explain this equation
x(x-1)>0 => x <0
why x<0 why not x>0?


Hello tannumunu,

\(x^2\) – x>0 is a quadratic inequality. When you have a quadratic inequality, factorise the expression to obtain the roots of the expression. These represent the critical points on the number line. Since the expression is quadratic, it will clearly have two roots.

When you mark two points on a number line, you will see that these points will divide the ENTIRE number line into three segments. Consider the right most segment as positive, the segment in the middle as negative and the left most segment as positive. Reason enough to call this the wavy curve method since the graph sweeps down from right to left and then rises up.

If your inequality has a ‘>’ sign, the segments with the positive sign represent the solutions to your inequality. On the other hand, if your inequality has a ‘<’ sign, the segment with the negative sign represents the solutions to your inequality.

Let’s simplify \(x^2\)-x>0 to obtain x(x-1)>0. What are the roots here? They are 0 and 1, right? Let’s mark them on the number line which will look like this:

Attachment:
03rd Apr 2020 - Reply 3.jpg
03rd Apr 2020 - Reply 3.jpg [ 31.01 KiB | Viewed 357 times ]


Since we have a ‘>’ sign in our inequality, the range of x which will satisfy our inequality is x>1 OR x<0. Important keyword here – OR. x can be greater than 1 OR lesser than 0.
As we do not know which range it is, we cannot conclusively say if x>0 or not.

Talking about your other argument – why not x<0?
x(x-1)>0. What does this mean? This means that the product of x and (x-1) has to be positive. This can happen only when both are positive or both are negative.

If x<0, (x-1)<0. If (x-1)<0, x<1. But, if x<0, then x<1 automatically, isn’t it? But, is x<0 the only range? No.

If x>0, (x-1)>0. If (x-1)>0, x>1. But, if x>1, then x>0 automatically, isn’t it?

Hope that clarifies your doubt. Here’s a link to our post on Quadratic inequalities. This will help you understand this concept better.
https://bit.ly/2X35jno
_________________
GMAT Club Bot
Re: Is x < 0? (1) x^2 - x > 0 (2) |x| < 1   [#permalink] 02 Apr 2020, 23:26

Is x < 0? (1) x^2 - x > 0 (2) |x| < 1

  new topic post reply Question banks Downloads My Bookmarks Reviews Important topics  





Powered by phpBB © phpBB Group | Emoji artwork provided by EmojiOne