Last visit was: 11 Dec 2024, 03:53 It is currently 11 Dec 2024, 03:53
Close
GMAT Club Daily Prep
Thank you for using the timer - this advanced tool can estimate your performance and suggest more practice questions. We have subscribed you to Daily Prep Questions via email.

Customized
for You

we will pick new questions that match your level based on your Timer History

Track
Your Progress

every week, we’ll send you an estimated GMAT score based on your performance

Practice
Pays

we will pick new questions that match your level based on your Timer History
Not interested in getting valuable practice questions and articles delivered to your email? No problem, unsubscribe here.
Close
Request Expert Reply
Confirm Cancel
User avatar
seekmba
Joined: 17 Feb 2010
Last visit: 25 Sep 2014
Posts: 628
Own Kudos:
3,412
 [4]
Given Kudos: 6
Posts: 628
Kudos: 3,412
 [4]
1
Kudos
Add Kudos
3
Bookmarks
Bookmark this Post
Most Helpful Reply
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,798
Own Kudos:
684,997
 [9]
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,798
Kudos: 684,997
 [9]
4
Kudos
Add Kudos
5
Bookmarks
Bookmark this Post
General Discussion
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,798
Own Kudos:
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,798
Kudos: 684,997
Kudos
Add Kudos
Bookmarks
Bookmark this Post
User avatar
seekmba
Joined: 17 Feb 2010
Last visit: 25 Sep 2014
Posts: 628
Own Kudos:
3,412
 [1]
Given Kudos: 6
Posts: 628
Kudos: 3,412
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks so much Bunuel.

However I did not understand how you arrived at

\(x^2(x-1)>0\)--> is \(x>1?\)
User avatar
Bunuel
User avatar
Math Expert
Joined: 02 Sep 2009
Last visit: 11 Dec 2024
Posts: 97,798
Own Kudos:
684,997
 [1]
Given Kudos: 88,239
Products:
Expert reply
Active GMAT Club Expert! Tag them with @ followed by their username for a faster response.
Posts: 97,798
Kudos: 684,997
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
seekmba
Thanks so much Bunuel.

However I did not understand how you arrived at

\(x^2(x-1)>0\)--> is \(x>1?\)

Is \(x^3>x^2\) --> is \(x^3-x^2>0\) --> is \(x^2(x-1)>0\) --> as \(x^2\) is non negative, for \(x^2(x-1)\) to be positive \(x\) must not be zero (first multiple) and \(x-1\) must be more than zero (second multiple) --> \(x\neq{0}\) and \(x-1>0\) --> \(x>1\).
User avatar
seekmba
Joined: 17 Feb 2010
Last visit: 25 Sep 2014
Posts: 628
Own Kudos:
Given Kudos: 6
Posts: 628
Kudos: 3,412
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks a bunch. Makes sense now.
User avatar
praveenism
Joined: 28 Feb 2010
Last visit: 12 Dec 2016
Posts: 82
Own Kudos:
Given Kudos: 33
 Q50  V27 GMAT 2: 710  Q50  V35
GPA: 8.13
WE 1: 3 (Mining Operations)
Posts: 82
Kudos: 126
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Another way of looking at the problem can be
X^2 > X means two things
1) X cannot be a fraction.
2) X can be a negative no.

Once it is ensured that X is non Negative number (as done by option A)
it will ensue that X^3 > X^2.

I Hope it helps :)
User avatar
ingoditrust
Joined: 14 Mar 2010
Last visit: 11 Apr 2012
Posts: 255
Own Kudos:
Given Kudos: 3
Status:Fighting on
Concentration: Product management/entrepreneurship
Schools:UCLA (R1 interview-WL), UNC(R2--interview-ding) Oxford(R2-Admit), Kelley (R2- Admit $$), McCombs(R2)
GMAT 2: 700  Q48  V38
GPA: 4.0
WE 1: SE - 1
WE 2: Engineer - 3
Posts: 255
Kudos: 61
Kudos
Add Kudos
Bookmarks
Bookmark this Post
answer should be C, you need to have positive number that is > 1.

1) will fail for fractions like 1/2 , 1/4 ...

2) will fail for -ve numbers

combine both you will get the number that satisfy the base question
User avatar
thesfactor
Joined: 19 Dec 2010
Last visit: 21 May 2011
Posts: 65
Own Kudos:
Given Kudos: 12
Posts: 65
Kudos: 55
Kudos
Add Kudos
Bookmarks
Bookmark this Post
I'm confused because MGMAT starts off the answer this way:

X^3 > X^2 equals:
X^3 - X^2 > 0
X^2 (X-1) > 0
Therefore we have an inequality in the form xy>0. After this they start heading to statement 1 and 2.

But on page 89 (Chapter 6 - Inequalities strategy of the same book) it says "Note that we should never subtract or divide two inequalities."
User avatar
thesfactor
Joined: 19 Dec 2010
Last visit: 21 May 2011
Posts: 65
Own Kudos:
Given Kudos: 12
Posts: 65
Kudos: 55
Kudos
Add Kudos
Bookmarks
Bookmark this Post
This is how the answer is presented in MGMAT:
Question: X^3>X^2?
Rephrase: X^3 - X^2>0?
Rephrase again: X^2(X-1)>0?

Both terms must be positive or negative, because we have an inequality in the form of xy>0. X^2 can never be negative, so we just need to know that both X^2>0 (meaning X is non zero) and X>1. Since every number greater than 1 is non-zero, we can rephrase the question to:
X>1?

Statement 1 tells us: X is positive. Insufficient.
Statement 2 tells us: X^2>X, so X<0 OR X>1. Insufficient.

Combining the statements, X>1. SOLVED...

I'm confused. Please help.
User avatar
fluke
User avatar
Retired Moderator
Joined: 20 Dec 2010
Last visit: 24 Oct 2013
Posts: 1,106
Own Kudos:
4,867
 [1]
Given Kudos: 376
Posts: 1,106
Kudos: 4,867
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Is X^3 > X^2?
1) X>0
2) X^2 > X

I have seen addition and subtraction of two inequalities. It helps us solve many inequality question. Usually, the inequalities can be subtracted when two inequalities have opposite sign;

1<2 ---A
100>50 ----B

Subtract B from A because the two inequalities have opposite signs; first inequality has "<" sign and second inequality has ">".
1-100<2-50 ; The sign "<" will remain that of A's
-99<-48

Perhaps you will need to read gmatclub's Number properties.

Coming to the question:
Is X^3 > X^2?
1) X>0
2) X^2 > X

X^3>X^2
X^3-X^2>0
X^2(X-1)>0
X>1

Question is reduced to:
Is X>1?

1. X>0.
So, X can be greater than 1 or smaller than 1.
Not sufficient.

2. X^2 > X
X^2-X>0
X(X-1)>0
X>1 or X<0
Not Sufficient.

Combining both;
X>1.
Sufficient.

Ans: "C"
User avatar
subhashghosh
User avatar
Retired Moderator
Joined: 16 Nov 2010
Last visit: 25 Jun 2024
Posts: 903
Own Kudos:
1,219
 [1]
Given Kudos: 43
Location: United States (IN)
Concentration: Strategy, Technology
Products:
Posts: 903
Kudos: 1,219
 [1]
1
Kudos
Add Kudos
Bookmarks
Bookmark this Post
X^3 - x^2 > 0

x^2(x-1) > 0

So either x^2 > 0 and x-1 > 0, because x^2 > 0 is always true therefore x > 1 has to be true

Note that the other part is not possible, i.e, x^2 < 0 and x-1 < 0

Now, (1) is insuff as we can't infer if x > 1 from this.


From (2)

x^2 - x > 0

x(x-1) > 0

For this to be true, either x > 0 and x-1 > 0, (which cannot be inferred)

or x < 0 and x < 1, which is contrary to what should happen, hence insufficient

But on taking (1) and (2) together, x > 0, so x > 1, hence sufficient, answer is C.
User avatar
GMATPill
Joined: 14 Apr 2009
Last visit: 17 Sep 2020
Posts: 2,261
Own Kudos:
3,726
 [2]
Given Kudos: 8
Location: New York, NY
Posts: 2,261
Kudos: 3,726
 [2]
1
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post


Step 1) The first thing I notice is that one exponent is odd and the other is even. So I immediately know what it's testing.

Step 2) I know I need to check positive and negative...but I also need to check fractions as well.

Check positive/negative:
If x = 2, then of course x^3 > x^2 [GOOD]
If x= -2, then x^3 is NOT > x^2 [NO GOOD]

So (A) and (D) are no good since there's inconsistency here with GOOD/NO GOOD.
For now, I don't need to check fractions. Just evaluate (2) for now.

Step 3) Evaluating (2): x^2 > x
Genearlly, squaring a number means it gets bigger. BUT--I know there's an exception--FRACTIONS!
If x = 1/2, then (1/2)^2 = (1/4)
So when you square a fraction, it actually gets smaller!
OK, so (2) is telling us: "Let's use only non-fractions."

Obviously, if we plug in a normal number like 3, it's gonna be a [TRUE] statement.
What happens if we plugin a negative number to x^3 > x^2?

Try x=-2. Well, then you'd get -8>+4 [FALSE].
So with x=+2, you get TRUE, but with x=-2, you get FALSE. .

So since you sometimes get FALSE and sometimes get TRUE---then you know this conflict means (B) is NO GOOD!

Step 4) But what about if you combine (1) and (2) together.

Well, (1) basically tells us we can restrict x to be positive.
(2) basically tells us we can restrict x to be only non-fractions.


So what if we only use x values that are positive AND non-fractions. That means x>=1.

Can we answer this original question definitively?

Is x^3 > X^2?

Well, when we only use x>1, then this statement is ALWAYS true. So voila!

When we combine (1) and (2) we can restrict the scope of possible X's to only those that are POSITIVE and NON-FRACTIONS--which means x>1.

Turns out this works out great. So we can choose (C) is the final answer.

https://www.gmatpill.com/practice-questi ... exponents/
User avatar
thesfactor
Joined: 19 Dec 2010
Last visit: 21 May 2011
Posts: 65
Own Kudos:
Given Kudos: 12
Posts: 65
Kudos: 55
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thank you all for the awesome explanations. It makes more sense now.

"You can only apply subtraction when their signs are in the opposite directions:

If a>b and c<d (signs in opposite direction: > and <) --> a-c>b-d (take the sign of the inequality you subtract from).
Example: 3<4 and 5>1 --> 3-5<4-1."

This was definitely news to me. Glad to know...
User avatar
thesfactor
Joined: 19 Dec 2010
Last visit: 21 May 2011
Posts: 65
Own Kudos:
Given Kudos: 12
Posts: 65
Kudos: 55
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Bunuel
Moved to DS subforum.

thesfactor
I have been trying to understand inequalities by reading MGMAT's VIC book and am confused. I was trying to solve a few problems and had some questions. I'd appreciate your help...

MGMAT VIC book (Inequalities : Advanced Set)
Page 187, Problem 9:

Is X^3 > X^2?
1) X>0
2) X^2 > X

1.

!
Please post PS questions in the PS subforum: gmat-problem-solving-ps-140/
Please post DS questions in the DS subforum: gmat-data-sufficiency-ds-141/

No posting of PS/DS questions is allowed in the main Math forum.

2. You can only add inequalities when their signs are in the same direction:

If \(a>b\) and \(c>d\) (signs in same direction: \(>\) and \(>\)) --> \(a+c>b+d\).
Example: \(3<4\) and \(2<5\) --> \(3+2<4+5\).

You can only apply subtraction when their signs are in the opposite directions:

If \(a>b\) and \(c<d\) (signs in opposite direction: \(>\) and \(<\)) --> \(a-c>b-d\) (take the sign of the inequality you subtract from).
Example: \(3<4\) and \(5>1\) --> \(3-5<4-1\).

Also note that in your example there is only one inequality and MGMAT solution just manipulates within it.

Back to the original question:

Is x^3 > x^2?

Is \(x^3 > x^2\)? --> is \(x^3-x^2>0\)? --> is \(x^2(x-1)>0\)? --> this inequality holds true for \(x>1\). So the question basically asks whether \(x>1\).

(1) x > 0. Not sufficient.
(2) x^2 > x --> \(x(x-1)>0\) --> \(x<0\) or \(x>1\). Not sufficient.

(1)+(2) Intersection of the ranges from (1) and (2) gives: \(x>1\). Sufficient.

Answer: C.

Solving inequalities:
x2-4x-94661.html#p731476
inequalities-trick-91482.html
data-suff-inequalities-109078.html
range-for-variable-x-in-a-given-inequality-109468.html?hilit=extreme#p873535
everything-is-less-than-zero-108884.html?hilit=extreme#p868863

Similar questions:
inequality-110191.html
friday-algebra-ds-108395.html
last-one-for-today-ds-algebra-108217.html
one-more-algebra-ds-108207.html
algebra-ds-108110.html
ds-algebra-107401.html
inequalities-concept-based-ds-107397.html
quant-review-2nd-edition-ds-104028.html
inequality-98674.html
inequality-ds-100086.html

DS questions on inequalities to practice: search.php?search_id=tag&tag_id=184
PS questions on inequalities to practice: search.php?search_id=tag&tag_id=189

Hope it helps.

Thanks for the detailed post. I apologize for posting this in the wrong forum - duly noted.

Now while trying to follow your logic, I seem to come to a dead end. Please help me out here -
You solved (2) x^2 > x --> x(x-1)>0 --> x<0 or x>1. Not sufficient.
What did you do to arrive at this conclusion. The way I see it, x(x-1)>0 is an xy inequality...where x can be -ve and y +ve OR vice versa
Therefore
X>0 and X<1
OR
X<0 and X>1

What's wrong with my logic here?

Finally, how do we get (1)+(2) Intersection of the ranges from (1) and (2) gives: x>1. Sufficient.
User avatar
thesfactor
Joined: 19 Dec 2010
Last visit: 21 May 2011
Posts: 65
Own Kudos:
Given Kudos: 12
Posts: 65
Kudos: 55
Kudos
Add Kudos
Bookmarks
Bookmark this Post
fluke
Is X^3 > X^2?
1) X>0
2) X^2 > X

I have seen addition and subtraction of two inequalities. It helps us solve many inequality question. Usually, the inequalities can be subtracted when two inequalities have opposite sign;

1<2 ---A
100>50 ----B

Subtract B from A because the two inequalities have opposite signs; first inequality has "<" sign and second inequality has ">".
1-100<2-50 ; The sign "<" will remain that of A's
-99<-48

Perhaps you will need to read gmatclub's Number properties.

Coming to the question:
Is X^3 > X^2?
1) X>0
2) X^2 > X

X^3>X^2
X^3-X^2>0
X^2(X-1)>0
X>1

Question is reduced to:
Is X>1?

1. X>0.
So, X can be greater than 1 or smaller than 1.
Not sufficient.

2. X^2 > X
X^2-X>0
X(X-1)>0
X>1 or X<0
Not Sufficient.

Combining both;
X>1.
Sufficient.

Ans: "C"

Thanks for the answer, I have a question here too...how did you arrive at this conclusion:
X^3>X^2
X^3-X^2>0
X^2(X-1)>0
X>1

The way I see it: X^2(X-1)>0 is an xy>0 solution where either x>0 and y<0 OR x<0 and y>0
Therefore in this case, X^2>0 and X-1<0 which means X>0 and X<1 ----- (A)
OR
X^2<0 and X-1>0 which means X<0 and X>1 ----- (B)

When we combine statements 1 and 2 we know that X>0 in (1)
Therefore (B) is not possible because X cannot be less than 0...what am I doing wrong here...
User avatar
GMATPill
Joined: 14 Apr 2009
Last visit: 17 Sep 2020
Posts: 2,261
Own Kudos:
Given Kudos: 8
Location: New York, NY
Posts: 2,261
Kudos: 3,726
Kudos
Add Kudos
Bookmarks
Bookmark this Post
thesfactor

Finally, how do we get (1)+(2) Intersection of the ranges from (1) and (2) gives: x>1. Sufficient.

I'll stay away from the top part of your question. As for the bottom:
[quote2gmatpill]Well, (1) basically tells us we can restrict x to be positive. (x>0)
(2) basically tells us we can restrict x to be only values outside of the -1 to 1 range.

So what if we only use x values that are positive AND non-fractions. That means x>1.[/quote2]



Hope that helps! By the way, be careful with all these symbols and calculations you are doing. The GMAT tests your REASONING skills and your ability to "make sense" of it. I may be wrong--but I get the sense you're getting too bogged down on the nitty gritty details yet don't really understand how to translate the math symbols into logic and reasoning.
User avatar
fluke
User avatar
Retired Moderator
Joined: 20 Dec 2010
Last visit: 24 Oct 2013
Posts: 1,106
Own Kudos:
4,867
 [1]
Given Kudos: 376
Posts: 1,106
Kudos: 4,867
 [1]
Kudos
Add Kudos
1
Bookmarks
Bookmark this Post
thesfactor
Thanks for the answer, I have a question here too...how did you arrive at this conclusion:
X^3>X^2
X^3-X^2>0
X^2(X-1)>0
X>1

The way I see it: X^2(X-1)>0 is an xy>0 solution where either x>0 and y<0 OR x<0 and y>0
Therefore in this case, X^2>0 and X-1<0 which means X>0 and X<1 ----- (A)
OR
X^2<0 and X-1>0 which means X<0 and X>1 ----- (B)

When we combine statements 1 and 2 we know that X>0 in (1)
Therefore (B) is not possible because X cannot be less than 0...what am I doing wrong here...

X^2(X-1)>0 is an xy>0 solution where either x>0 and y<0 OR x<0 and y>0

This is not correct.

If a*b > 0; It means either a and b are both +ve OR a and b are both -ve.
If a*b < 0; It means either a is +ve and b is -ve OR a is -ve and b is +ve.

X^2(X-1)>0

Here; either X^2 and (X-1) are both negative OR X^2 and (X-1) are both +ve

X^2 can't be -ve.
Note:
A square can never be a negative value. It can be 0 or +ve.
X^2 is also not 0. Because if X=0; then X^2=0; That will make X^2(X-1) = 0; but X^2(X-1)>0. Thus, X is not 0.

So, X^2 is +ve and X-1 is also +ve.
X-1>0
X>1 and X>0
Combing both; X>1.

So; the ultimate question becomes;
Is X>1

1. This statement tells us that X>0.
X can be 0.5<1 or 2>1.
Thus not sufficient.

2. X^2>X
X^2-X>0
X(X-1)>0

Again a*b>0; a +ve and b+ve OR a-ve and b-ve

X(X-1)>0
X>0 and X-1>0 i.e. X>1
Combing both; X>1
OR
X<0 and X-1<0 i.e. X<1
Combing both; X<0

We have X>1 or X<0
Not sufficient.

Combing both;
Statement 1 tells us that X>0
Statement 2 tells us that X could be less than 0 or greater than 1. Since St 1 tells us that X>0; we can ignore the St2 condition where it says X<0.
Thus, X>0 and X>1. Means X>1

C.
***************************************************

These questions become easier if you knew how to find proper ranges of X in the inequality. Get yourself acquainted with the following trick:
https://gmatclub.com/forum/inequalities-trick-91482.html

This was little cumbersome for me in the beginning. But, with adequate practice and guidance from Bunuel, I am getting hold of it. Yet to become an exponent though. It's really proven fruitful for me.

Good luck!!
User avatar
fluke
User avatar
Retired Moderator
Joined: 20 Dec 2010
Last visit: 24 Oct 2013
Posts: 1,106
Own Kudos:
Given Kudos: 376
Posts: 1,106
Kudos: 4,867
Kudos
Add Kudos
Bookmarks
Bookmark this Post
thesfactor
Thanks for the answer, I have a question here too...how did you arrive at this conclusion:
X^3>X^2
X^3-X^2>0
X^2(X-1)>0
X>1

The way I see it: X^2(X-1)>0 is an xy>0 solution where either x>0 and y<0 OR x<0 and y>0
Therefore in this case, X^2>0 and X-1<0 which means X>0 and X<1 ----- (A)
OR
X^2<0 and X-1>0 which means X<0 and X>1 ----- (B)

When we combine statements 1 and 2 we know that X>0 in (1)
Therefore (B) is not possible because X cannot be less than 0...what am I doing wrong here...

X^2(X-1)>0 is an xy>0 solution where either x>0 and y<0 OR x<0 and y>0

This is not correct.

If a*b > 0; It means either a and b are both +ve OR a and b are both -ve.
If a*b < 0; It means either a is +ve and b is -ve OR a is -ve and b is +ve.

X^2(X-1)>0

Here; either X^2 and (X-1) are both negative OR X^2 and (X-1) are both +ve

X^2 can't be -ve.
Note:
A square can never be a negative value. It can be 0 or +ve.
X^2 is also not 0. Because if X=0; then X^2=0; That will make X^2(X-1) = 0; but X^2(X-1)>0. Thus, X is not 0.

So, X^2 is +ve and X-1 is also +ve.
X-1>0
X>1 and X>0
Combing both; X>1.

So; the ultimate question becomes;
Is X>1

1. This statement tells us that X>0.
X can be 0.5<1 or 2>1.
Thus not sufficient.

2. X^2>X
X^2-X>0
X(X-1)>0

Again a*b>0; a +ve and b+ve OR a-ve and b-ve

X(X-1)>0
X>0 and X-1>0 i.e. X>1
Combing both; X>1
OR
X<0 and X-1<0 i.e. X<1
Combing both; X<0

We have X>1 or X<0
Not sufficient.

Combing both;
Statement 1 tells us that X>0
Statement 2 tells us that X could be less than 0 or greater than 1. Since St 1 tells us that X>0; we can ignore the St2 condition where it says X<0.
Thus, X>0 and X>1. Means X>1

C.
***************************************************

These questions become easier if you knew how to find proper ranges of X in the inequality. Get yourself acquainted with the following trick:
https://gmatclub.com/forum/inequalities-trick-91482.html

This was little cumbersome for me in the beginning. But, with adequate practice and guidance from Bunuel, I am getting hold of it. Yet to become an exponent though. It's really proven fruitful for me.

Good luck!!
User avatar
thesfactor
Joined: 19 Dec 2010
Last visit: 21 May 2011
Posts: 65
Own Kudos:
Given Kudos: 12
Posts: 65
Kudos: 55
Kudos
Add Kudos
Bookmarks
Bookmark this Post
Thanks for the post. You're right, I might be getting bogged down in the details. I need to see through the haze...
 1   2   
Moderator:
Math Expert
97797 posts