Is x - y > r - s ? (1) x > r and y < s. You can subtract inequalities if their signs are in the opposite directions (> <): x-y>r-s. Sufficient.

(2) y=2, s=3, r=5, and x=6. We have the exact values of each unknown, thus we can answer whether x-y>r-s. Sufficient.

Answer: D.

ADDING/SUBTRACTING INEQUALITIES:

You can only add inequalities when their signs are in the same direction:If \(a>b\) and \(c>d\) (signs in same direction: \(>\) and \(>\)) --> \(a+c>b+d\).

Example: \(3<4\) and \(2<5\) --> \(3+2<4+5\).

You can only apply subtraction when their signs are in the opposite directions:If \(a>b\) and \(c<d\) (signs in opposite direction: \(>\) and \(<\)) --> \(a-c>b-d\) (take the sign of the inequality you subtract from).

Example: \(3<4\) and \(5>1\) --> \(3-5<4-1\).

RAISING INEQUALITIES TO EVEN/ODD POWER:

A. We can raise both parts of an inequality to an even power if we know that both parts of an inequality are non-negative (the same for taking an even root of both sides of an inequality).For example:

\(2<4\) --> we can square both sides and write: \(2^2<4^2\);

\(0\leq{x}<{y}\) --> we can square both sides and write: \(x^2<y^2\);

But if either of side is negative then raising to even power doesn't always work.

For example: \(1>-2\) if we square we'll get \(1>4\) which is not right. So if given that \(x>y\) then we can not square both sides and write \(x^2>y^2\) if we are not certain that both \(x\) and \(y\) are non-negative.

B. We can always raise both parts of an inequality to an odd power (the same for taking an odd root of both sides of an inequality).For example:

\(-2<-1\) --> we can raise both sides to third power and write: \(-2^3=-8<-1=-1^3\) or \(-5<1\) --> \(-5^3=-125<1=1^3\);

\(x<y\) --> we can raise both sides to third power and write: \(x^3<y^3\).

For multiplication check here:

help-with-add-subtract-mult-divid-multiple-inequalities-155290.html#p1242652THEORY ON INEQUALITIES:

x2-4x-94661.html#p731476inequalities-trick-91482.htmldata-suff-inequalities-109078.htmlrange-for-variable-x-in-a-given-inequality-109468.htmleverything-is-less-than-zero-108884.htmlgraphic-approach-to-problems-with-inequalities-68037.htmlinequations-inequalities-part-154664.htmlinequations-inequalities-part-154738.htmlQUESTIONS:

All DS Inequalities Problems to practice:

search.php?search_id=tag&tag_id=184All PS Inequalities Problems to practice:

search.php?search_id=tag&tag_id=189700+ Inequalities problems:

inequality-and-absolute-value-questions-from-my-collection-86939.htmlHope it helps.

_________________

New to the Math Forum?

Please read this: Ultimate GMAT Quantitative Megathread | All You Need for Quant | PLEASE READ AND FOLLOW: 12 Rules for Posting!!!

Resources:

GMAT Math Book | Triangles | Polygons | Coordinate Geometry | Factorials | Circles | Number Theory | Remainders; 8. Overlapping Sets | PDF of Math Book; 10. Remainders | GMAT Prep Software Analysis | SEVEN SAMURAI OF 2012 (BEST DISCUSSIONS) | Tricky questions from previous years.

Collection of Questions:

PS: 1. Tough and Tricky questions; 2. Hard questions; 3. Hard questions part 2; 4. Standard deviation; 5. Tough Problem Solving Questions With Solutions; 6. Probability and Combinations Questions With Solutions; 7 Tough and tricky exponents and roots questions; 8 12 Easy Pieces (or not?); 9 Bakers' Dozen; 10 Algebra set. ,11 Mixed Questions, 12 Fresh Meat

DS: 1. DS tough questions; 2. DS tough questions part 2; 3. DS tough questions part 3; 4. DS Standard deviation; 5. Inequalities; 6. 700+ GMAT Data Sufficiency Questions With Explanations; 7 Tough and tricky exponents and roots questions; 8 The Discreet Charm of the DS; 9 Devil's Dozen!!!; 10 Number Properties set., 11 New DS set.

What are GMAT Club Tests?

Extra-hard Quant Tests with Brilliant Analytics